首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A possibility of preparation of monodisperse magnetic polymer particles containing carboxylic groups by the methid of emulsion (co)polymerization in the presence of a magnetic liquidis considered. Angulation of the magnetite nanoparticles by polymeric spheres of styrene-acroleine copolymer followed by incapsulation to the polystyrene coat is studied. Monodisperse particles with inclusion of the magnetite nanoparticles 30 nm to 1 μm size containing up to 5.6 μmol g?1 surface carboxylic groups are obtained, their electrosurface and magnetic properties are studied.  相似文献   

2.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

3.
We demonstrated the use of electrohydrodynamic atomization to prepare uniform-sized emulsion droplets in which equal spheres of silica or polystyrene were dispersed. The size of the emulsion droplets was easily controlled by the electric field strength and the flow rate, independently of the diameter of the nozzles. During the evaporation of solvent in the droplets, spherical colloidal crystals were formed by self-assembly of the monodisperse colloidal spheres. The diameter of the spherical colloidal crystals was in the range of 10-40 microm. Depending on the stability of colloidal particles, the morphology of the self-assembled structure was varied. In particular, silica spheres in ethanol droplets were self-assembled into compactly packed silica colloidal crystals in spherical shapes, whereas polystyrene latex spheres in toluene droplets self-assembled into spherical colloidal crystal shells with hollow cores. The silica colloidal assemblies reflected diffraction colors according to the three-dimensionally ordered arrangement of silica spheres.  相似文献   

4.
A magnetic poly(methyl methacrylate) (PMMA) composite latex was prepared by soapless emulsion polymerization in the presence of ferrofluid, and the ferrofluid was prepared by means of a coprecipitation method. The effects of various polymerization parameters, such as the monomer concentration, ferrofluid content, and initiator concentration, on the conversion curve and particle size of the magnetic composite latex particles were examined in detail. The results showed that two nucleation mechanisms were involved according to the polymerization conditions. In the monomer‐rich and less ferrofluid system, self‐nucleation of PMMA was dominant over the entire course of emulsion polymerization. In the ferrofluid‐rich system, seeded emulsion polymerization was the main course to form the magnetic composite latex particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5695–5705, 2004  相似文献   

5.
This article reports the facile synthesis of monodisperse polymer hollow spheres by seeded emulsion polymerization without additional treatment. In this method, P(St-MMA-MAA) copolymer latex particles were first prepared by emulsifier-free emulsion polymerization and then used as seeds to carry out emulsion polymerization of methyl methacrylate (MMA), divinyl benzene (DVB), and 2-hydroxyethyl methacrylate (HEMA) with potassium persulfate (KPS) as initiator at 80 degrees C. The void of hollow spheres was readily adjusted by changing the monomer/seed weight ratio, and it could be enlarged while the diameters of hollow spheres changed little after etching by dimethyl formamide (DMF). The effects of synthetic parameters including the monomer composition and the properties of seeds on the morphology of hollow spheres were investigated in detail. On the basis of the experimental results, it seemed reasonable to conclude that the formation of hollow spheres was due to the "dissolution" of seeds in monomers and phase separation between the constituent polymers. As a thermodynamic factor, sodium dodecyl sulfate (SDS) would allow the preparation of solid particles depending on its level.  相似文献   

6.
Three-dimensional photonic crystals made of close-packed polymethylmethacrylate (PMMA) spheres or air spheres in silica, titania and ceria matrices have been fabricated and characterized using SEM, XRD, Raman spectroscopy and UV–Vis transmittance measurements. The PMMA colloidal crystals (opals) were grown by self-assembly from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centred cubic (fcc) array, and UV–Vis measurements show that the colloidal crystals possess pseudo photonic band gaps in the visible and near-IR regions. Inverse opals were prepared by depositing silica (SiO2), titania (TiO2) or ceria (CeO2) in the voids of the PMMA colloidal crystals using sol-gel procedures, then calcining the resulting structure at 550 °C to remove the polymer template. The resulting macroporous materials showed fcc ordering of air spheres separated by thin frameworks of amorphous silica, nanocrystalline titania or nanocrystalline ceria particles, respectively. Optical measurements confirmed the photonic nature of the inverse opal arrays. UV–Vis data collected for the opals and inverse opals obeyed a modified Bragg’s law expression that considers both diffraction and refraction of light by the photonic crystal architectures. The versatility of the colloidal crystal template approach for the fabrication of macroporous oxide structures is demonstrated.  相似文献   

7.
8.
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.  相似文献   

9.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

10.
The formation mechanism of monodisperse polymer latex particles in the emulsifier-free emulsion polymerizationof methyl methacrylate and butyl acrylate with potassium persulfate as initiator was investigated. A multi-step formationmechanism for the monodisperse polymer particles was proposed. The nucleation mechanism is considered to be thecoagulation of the precursor particles by homogeneous nucleation when the primary particles reach a critical size with highsurface charge density and sufficient stability. It had been proved by a special experiment that the early latex particles formedby the coagulation were stable. The primary particles grow by absorbing monomers and radicals in the polymerization systemand then become colloidally unstable again due to the understandable decrease of particle surface charge density, which leadsto the aggregation of the growing particles and the formation of larger latex pedicles therefrom. Aner the nucleation period,the preferential aggregation of the smaller particles in the propagation process leads to the change of the particles towards auniform size and narrower particle size distribution. The coexistence and competition of homogeneous nucleation,coagulation, propagation and aggregation result in the increase of the polydispersity index (U = D_(43)/D_(10)) in the first Stage,then its decrease in the later stage because of the competition of propagation and aggregation, and the gradual formation ofthe monodisperse particles.  相似文献   

11.
Soap-free emulsion polymerization was extended to preparation of monodisperse poly(methyl methacrylate) (PMMA) particles incorporating rhodamine 6G (R6G) fluorescent molecules. The polymerization was conducted in the presence of an anionic monomer, p-styrenesulfonate (NaSS), which improved dispersion stability of the polymer particles. NaSS concentrations was ranged up to 2 mol/m3 H2O in the polymerization at 0.5 kmol/m3 H2O methyl methacrylate (MMA) monomer and 5 mol/m3 H2O potassium persulfate (KPS) initiator for R6G concentrations from 0.1 to 10 mol/m3-polymer. At R6G concentrations lower than 1.0 mol/m3-polymer, PMMA particles were highly monodisperse and incorporated most R6G molecules. The average sizes of PMMA particles were in a rage of 160-300 nm, and decreased with the concentration of NaSS. The high monodispersity of the particles enabled the fabrication of colloidal crystals of the particles with a vertical deposition method.  相似文献   

12.
Lee SK  Yi GR  Yang SM 《Lab on a chip》2006,6(9):1171-1177
In this paper, we report a rapid and facile method for fabricating colloidal photonic crystals inside microchannels of radially symmetric microfluidic chips which were made using soft-lithography. As the suspension of monodisperse silica or polystyrene latex spheres was driven to flow through the channels under the action of centrifugal force, the colloidal spheres were quickly assembled into face centered cubic arrangement which had a few photonic stop bands. The soft-microfluidic channels and cells confined the colloidal crystals into designed patterns. The optical reflectance was modulated by the refractive-index mismatch between the colloidal particles and the solvent in the interstices between the particles. Therefore, the present microfluidic chips with built-in colloidal photonic crystals can be used as in-situ optofluidic microsensors for high throughput screening or light filters in integrated adaptive optical devices.  相似文献   

13.
Summary : Monodisperse P(BA-MMA-MAA-EGDMA)/P(St-MAA-DVB) core/shell latex particles were first synthesized by a four-step emulsion polymerization, and a new kind of latex particles with “bowl-like” morphology were obtained by post-treating the resultant core/shell particles under alkali condition. Results indicated that the feeding rates of the monomer mixture and initiator aqueous solution were the key parameters to obtain monodisperse core/shell latex particles in the emulsion polymerization process, and the latex particles with “bowl-like” morphology could be generated only when the treatment temperature was equal or higher than 70 °C.  相似文献   

14.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

15.
Magnetic iron oxide (magnetite, Fe3O4) nanoparticles were encapsulated with polystyrene to give a stable water‐based magnetic polymer latex, using the miniemulsion polymerization technique. The resulting magnetic latexes were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer measurements (VSM), and 57Fe Mössbauer spectroscopy measurements. TEM revealed that all magnetite nanoparticles were embedded in the polymer spheres, leaving no empty polystyrene particles. The distribution of magnetite particles within the polystyrene spheres was inhomogeneous, showing an uneven polar appearance. The DLS measurements indicated a bimodal size distribution for the particles in the latexes. According to our magnetometry and Mössbauer spectroscopy data, the encapsulated magnetite particles conserve their superparamagnetic feature when they are separated in the polymer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4802–4808, 2004  相似文献   

16.
The fabrication of small structured spherical particles that are essentially small photonic crystals is described. The particles are 1-50 microm in diameter and are porous with nearly close-packed monodisperse pores whose size is comparable to the wavelength of light. The solid matrix of the particles is titania, which provides a large refractive index contrast between the particle matrix and pores. The particles are made by encapsulating polymer colloidal particles in emulsion droplets of hexanes in which a titanium alkoxide precursor is dissolved. Subsequent osmotic removal of the hexanes from the droplets and condensation of the alkoxide precursor leads to spherical aggregates of polymer spheres with titania filling the spaces between the polymer spheres. The polymer particles are then burned out leaving behind the desired porous titania particles. The size and structure of the pores and high refractive index of the titania matrix are expected to produce particles that are very efficient scatterers of light, making them useful as pigments.  相似文献   

17.
Polymerfilmformationfromeitherlatexorsolutionisquiteaninterestingbutcomplicatedsubjectdealingwithdiffusion,interpenetrationandcoagulationofpolymerchains,andespeciallycorrelatedtothepropertiesofthefinallyformedfilm.Manystudies[1—3]havebeencarriedoutonlat…  相似文献   

18.
A novel method of fabricating composite particles with core–shell structures is demonstrated. The particles comprised monodisperse submicrometer-sized copolymer latex spheres as cores and Fe2O3 crystallites as shells. The shell was formed by controlled hydrolysis of aqueous iron solutions, and the growth of hematite on the surface of the copolymer spheres was controlled by slow injection. Hollow spheres were obtained by calcinations of the so-coated copolymer lattices at 500°C in air. The void size of these hollow spheres was determined by the diameter of the copolymer template, and the wall thickness could be easily controlled in the range of 20–60 nm by using this coating process. The structure and the composition of the spheres were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). It can be seen that a crystallite change and a crystal phase transformation occurred during coating and calcination of the composite spheres. The formation of the composite particles is simply explained by the nucleation of iron oxide on the surface of the latex followed by growth of the iron compound shell.  相似文献   

19.
Bromo-initiators for atom transfer radical polymerization (ATRP) were successfully immobilized on the surfaces of cross-linked poly(methyl methacrylate) (PMMA) spheres by soap-free emulsion polymerization using CBr(4) as the chain transfer agent. Subsequent surface-initiated ATRP (SI-ATRP) afforded a layer of PMMA brushes covalently attached to the sphere surfaces. Colloidal crystal films of these monodisperse spheres were then studied to identify the relationship between variation in particle diameter and the optical properties. The particle diameters were controlled by varying the feed monomer proportions in soap-free emulsion polymerization and the thickness of the grafted brush layer. It was found that the particle diameter could successfully be controlled to obtain crystal films that produce a variety of brilliant colors in the visible region. The results of this study can provide useful information for facile preparation of surface-immobilized ATRP initiators on colloidal polymers and can be employed for grafting polymer brushes.  相似文献   

20.
Liquid crystals (LCs) encapsulated in monodisperse micron-sized polymer particles were prepared to control the size and size distribution of LC droplets in polymer-dispersed LCs. The poly(methyl methacrylate) (PMMA) seed particles were swollen with the mixture of liquid crystal, monomers (methyl methacrylate and styrene) and initiator by using a diffusion-controlled swelling method. A single LC domain was produced by the phase separation between PMMA and LC through polymerization. The optical microscopy and scanning electron microscopy showed that the particles are highly monodisperse with core–shell structure. Moreover, monodisperse LC core domains were confirmed from polarized optical microscope observations. The final particle morphology was influenced by the cross-linking of the seed particle. When linear PMMA particles, which are not cross-linked, were used as a seed, the microcapsules were distorted after annealing for a few days; however, in the case of cross-linked PMMA particles, the core–shell structure was sustained stably after annealing. Received: 22 November 2000 Accepted: 12 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号