首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phase field model of fracture that accounts for anisotropic material behavior at small and large deformations is outlined within this work. Most existing fracture phase field models assume crack evolution within isotropic solids, which is not a meaningful assumption for many natural as well as engineered materials that exhibit orientation-dependent behavior. The incorporation of anisotropy into fracture phase field models is for example necessary to properly describe the typical sawtooth crack patterns in strongly anisotropic materials. In the present contribution, anisotropy is incorporated in fracture phase field models in several ways: (i) Within a pure geometrical approach, the crack surface density function is adopted by a rigorous application of the theory of tensor invariants leading to the definition of structural tensors of second and fourth order. In this work we employ structural tensors to describe transverse isotropy, orthotropy and cubic anisotropy. Latter makes the incorporation of second gradients of the crack phase field necessary, which is treated within the finite element context by a nonconforming Morley triangle. Practically, such a geometric approach manifests itself in the definition of anisotropic effective fracture length scales. (ii) By use of structural tensors, energetic and stress-like failure criteria are modified to account for inherent anisotropies. These failure criteria influence the crack driving force, which enters the crack phase field evolution equation and allows to set up a modular structure. We demonstrate the performance of the proposed anisotropic fracture phase field model by means of representative numerical examples at small and large deformations.  相似文献   

2.
A phenomenological void–crack nucleation model for ductile metals with secondphases is described which is motivated from fracture mechanics and microscale physicalobservations. The void–crack nucleation model is a function of the fracture toughness of theaggregate material, length scale parameter (taken to be the average size of the second phaseparticles in the examples shown in this writing) , the volume fraction of the second phase, strainlevel, and stress state. These parameters are varied to explore their effects upon the nucleationand damage rates. Examples of correlating the void–crack nucleation model to tension data in theliterature illustrate the utility of the model for several ductile metals. Furthermore, compression,tension, and torsion experiments on a cast Al–Si–Mg alloy were conducted to determinevoid–crack nucleation rates under different loading conditions. The nucleation model was thencorrelated to the cast Al–Si–Mg data as well.  相似文献   

3.
魏悦广 《力学学报》2000,32(3):291-299
裂纹在韧性材料中扩展时,将们随着微孔洞的萌生和生长,孔洞的萌生和深化将直接影响着材料的总体断裂韧性和强度,以往的研究主要集中在将裂纹的扩展刻划为微孔洞的萌生、生长和汇合这样一个过程。从传统的断裂过程区模型出发研究微孔洞的萌生和生长对材料总体断裂韧性的影响,通过采用Gurson模型,建立塑性增量本构关系,然后针对定常扩展情况直接进行分析,孔洞对材料断裂韧性的影响由本构关系刻划,而在孔洞汇合模型中,上  相似文献   

4.
Nucleation, growth and coalescence of micro-voids result in the fracture of materials. Most mathematical models neglect nucleation and introduce initial damage, assuming it as a material constant. However, the original damage, which is formed during material working, is a material constant. The initial damage is a model parameter and depends on the load. Apparently, the predictability of such a model is poor.This paper made comparison and analysis of the four classical void growth models and showed their similarities. At the beginning of damage evolution, all the models follow a linear relationship in the form , where c is the size of micro voids and k is a parameter which relates the material and loading condition. With the concept of statistical micro-damage and the assumption of uniform void radius for new voids, a damage evolution equation was deduced based on the above void growth model. With this equation the effects of nucleation and growth at the beginning of the damage stage on the whole process of damage evolution can be calculated. The transition time from the nucleation dominant phase to the growth dominant phase can be determined. When the transition time is applied to the damage failure model of ductile material proposed by Johnson, the initial damage (f0), a model parameter in the original model, can also be determined. The results of the derived damage evolution equation agree well with the previous research results.  相似文献   

5.
6.
The work is concerned with the modeling and simulation of large scale ductile fracture in plate and shell structures. A meshfree method – the reproducing kernel particle method (RKPM) – is used in numerical computations in order to enact dynamic crack propagation without remeshing. There are several novelties in the present approach. First, we have developed a crack surface approximation and particle split algorithm for three-dimensional through-thickness cracks. Second, to represent evolving crack surface in 3D shell structures, a 3D parametric visibility condition algorithm is proposed, which re-constructs the local connectivity map for particles near the crack tip or crack surfaces, so that the meshfree interpolation field can represent physical material separation in the computational domain. Third, the constitutive update formulas in explicit time integration by different versions of Gurson models and the rate-dependent Johnson–Cook model are implemented for 3D computations. Finally, the performance of different Gurson-type models are investigated and compared with the experimental data of large scale in-plate tear process. Numerical simulations of crack propagation in stiffened plates and shells demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale plate/shell structures with engineering accuracy.  相似文献   

7.
The mechanical response of engineering materials evaluated through continuum fracture mechanics typically assumes that a crack or void initially exists, but it does not provide information about the nucleation of such flaws in an otherwise flawless microstructure. How such flaws originate, particularly at grain (or phase) boundaries is less clear. Experimentally, “good” vs. “bad” grain boundaries are often invoked as the reasons for critical damage nucleation, but without any quantification. The state of knowledge about deformation at or near grain boundaries, including slip transfer and heterogeneous deformation, is reviewed to show that little work has been done to examine how slip interactions can lead to damage nucleation. A fracture initiation parameter developed recently for a low ductility model material with limited slip systems provides a new definition of grain boundary character based upon operating slip and twin systems (rather than an interfacial energy based definition). This provides a way to predict damage nucleation density on a physical and local (rather than a statistical) basis. The parameter assesses the way that highly activated twin systems are aligned with principal stresses and slip system Burgers vectors. A crystal plasticity-finite element method (CP-FEM) based model of an extensively characterized microstructural region has been used to determine if the stress–strain history provides any additional insights about the relationship between shear and damage nucleation. This analysis shows that a combination of a CP-FEM model augmented with the fracture initiation parameter shows promise for becoming a predictive tool for identifying damage-prone boundaries.  相似文献   

8.
The objective is to investigate energy dissipation mechanisms that operate at different length scales during fracture in ductile materials. A dimensional analysis is performed to identify the sets of dimensionless parameters which contribute to energy dissipation via dislocation-mediated plastic deformation at a crack tip. However, rather than using phenomenological variables such as yield stress and hardening modulus in the analysis, physical variables such as dislocation density, Burgers vector and Peierls stress are used. It is then shown via elementary arguments that the resulting dimensionless parameters can be interpreted in terms of competitions between various energy dissipation mechanisms at different length scales from the crack tip; the energy dissipations mechanisms are cleavage, crack tip dislocation nucleation and also dislocation nucleation from a Frank-Read source. Therefore, the material behavior is classified into three groups. The first two groups are the well-known intrinsic brittle and intrinsic ductile behavior. The third group is designated to be extrinsic ductile behavior for which Frank-Read dislocation nucleation is the initial energy dissipation mechanism. It is shown that a material is predicted to exhibit extrinsic ductility if the dimensionless parameter disl1/2 (b is Burgers vector, ρdisl is dislocation density) is within a certain range defined by other dimensionless parameters, irrespective of the competition between cleavage and crack tip dislocation nucleation. The predictions compare favorably to the documented behavior of a number of different classes of materials.  相似文献   

9.
In this investigation, the three-parameter Modified Mohr–Coulomb (MMC) fracture model and the determination of the material parameters are briefly described. The formulation of the post-initiation behavior is proposed by defining both the explicit softening law and the incremental damage evolution law. As opposed to the existing attempts to simulate slant fracture with material weakening before crack formation, softening is assumed to occur only in the post-initiation range. The justification of this assumption can be provided by the interrupted fracture tests, for example, Spencer et al. (2002).Element deletion with a gradual loss of strength is used to simulate crack propagation after fracture initiation. The main emphasis of the paper is the numerical prediction of slant fracture which is almost always observed in thin sheets. For that purpose, VUMAT subroutines of ABAQUS are coded with post-initiation behavior for both shell elements and plane strain elements. Fracture of flat-grooved tensile specimens cut from advanced high strength steel (AHSS) sheets are simulated by 2D plane strain element and shell element models.  相似文献   

10.
Structural reliability analyses of piezoelectric solids need the modeling of failure under coupled electromechanical actions. However, the numerical simulation of failure due to fracture based on sharp crack discontinuities may suffer in situations with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase field. In this work, we develop a framework of diffusive fracture in piezoelectric solids. We start our investigation with the definition of a crack surface functional of the phase field that Γ-converges for vanishing length-scale parameter to a sharp crack topology. This functional provides the basis for the definition of suitable dissipation functions which govern the evolution of the crack phase field. Based on experimental results available in the literature, we suggest a non-associative dissipative framework where the fracture phase field is driven by the mechanical part of the coupled electromechanical driving force. This accounts for a hierarchical view that considers (i) the decrease of stiffness due to mechanical rupture as the primary action that is followed by (ii) the decrease of electric permittivity due to the generated free space. The proposed definition of mechanical and electrical parts of the fracture driving force follows in a natural format from a kinematic assumption, that decomposes the total strains and the total electric field into energy-enthalpy-producing parts and fracture parts, respectively. Such an approach allows the insertion of well-known anisotropic piezoelectric storage functions without change. We end up with a three-field-problem that couples the displacement with the electric potential and the fracture phase field. The latter is governed by a micro-balance equation, which appears in a very transparent form in terms of a history field containing a maximum fracture source obtained in the time history of the electromechanical process. This representation allows the construction of a very robust algorithmic treatment based on a operator split scheme, which successively updates in a typical time step the history field, the crack phase field and finally the two piezoelectric fields. The proposed model is considered to be the canonically simple scheme for the simulation of diffusive electromechanical crack propagation in solids. We demonstrate its modeling capacity by means of representative numerical examples.  相似文献   

11.
We present a combined experimental–numerical study on fracture initiation at the convex surface and its propagation during bending of a class of ferritic–martensitic steel. On the experimental side, so-called free bending experiments are conducted on DP1000 steel sheets until fracture, realizing optical and scanning electron microscopy analyses on the post mortem specimens for fracture characterization. A blended Mode I – Mode II fracture pattern, which is driven by cavitation at non-metallic inclusions as well as martensitic islands and resultant softening-based intense strain localization, is observed. Phenomena like crack zig-zagging and crack alternation at the bend apex along the bending axis are introduced and discussed. On the numerical side, based on this physical motivation, the process is simulated in 2D plane strain and 3D, using Gurson’s dilatant plasticity model with a recent shear modification, strain-based void nucleation, and coalescence effects. The effect of certain material parameters (initial porosity, damage at coalescence and failure, shear modification term, etc.), plane strain constraint and mesh size on the localization and the fracture behavior are investigated in detail.  相似文献   

12.
A model is developed for brittle failure under compressive loading with an explicit accounting of micro-crack interactions. The model incorporates a pre-existing flaw distribution in the material. The macroscopic inelastic deformation is assumed to be due to the nucleation and growth of tensile “wing” micro-cracks associated with frictional sliding on these flaws. Interactions among the cracks are modeled by means of a crack-matrix-effective-medium approach in which each crack experiences a stress field different from that acting on isolated cracks. This yields an effective stress intensity factor at the crack tips which is utilized in the formulation of the crack growth dynamics. Load-induced damage in the material is defined in terms of a scalar crack density parameter, the evolution of which is a function of the existing flaw distribution and the crack growth dynamics. This methodology is applied for the case of uniaxial compression under constant strain rate loading. The model provides a natural prediction of a peak stress (defined as the compressive strength of the material) and also of a transition strain rate, beyond which the compressive strength increases dramatically with the imposed strain rate. The influences of the crack growth dynamics, the initial flaw distribution, and the imposed strain rate on the constitutive response and the damage evolution are studied. It is shown that different characteristics of the flaw distribution are dominant at different imposed strain rates: at low rates the spread of the distribution is critical, while at high strain rates the total flaw density is critical.  相似文献   

13.
研究了一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学问题。基于复变弹性理论和表面弹性理论获得了考虑表面效应时椭圆孔边裂纹的应力场、应力强度因子和能量释放率的解析表达;讨论了缺陷尺寸、裂纹/孔洞比、耦合系数和施加载荷对应力强度因子和能量释放率的影响。研究表明:考虑表面效应且缺陷的尺寸在纳米尺度时,声子场和相位子场的无量纲应力强度因子以及无量纲能量释放率具有明显的尺寸依赖;裂纹相对尺寸较小时,表面效应对声子场和相位子场的无量纲应力强度因子影响较小;纳米尺度时无量纲能量释放率随耦合系数的增加而增大;耦合系数一定时,无量纲能量释放率受到椭圆孔尺寸影响;随着声子场载荷的增大,无量纲能量释放率先减小后增加,最后趋于稳定;无量纲能量释放率随相位子场载荷的增大单调减小,非常小和非常大的声子场载荷(或相位子场载荷)屏蔽了相位子场载荷(或声子场载荷)的影响。  相似文献   

14.
研究了一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学问题。基于复变弹性理论和表面弹性理论获得了考虑表面效应时椭圆孔边裂纹的应力场、应力强度因子和能量释放率的解析表达;讨论了缺陷尺寸、裂纹/孔洞比、耦合系数和施加载荷对应力强度因子和能量释放率的影响。研究表明:考虑表面效应且缺陷的尺寸在纳米尺度时,声子场和相位子场的无量纲应力强度因子以及无量纲能量释放率具有明显的尺寸依赖;裂纹相对尺寸较小时,表面效应对声子场和相位子场的无量纲应力强度因子影响较小;纳米尺度时无量纲能量释放率随耦合系数的增加而增大;耦合系数一定时,无量纲能量释放率受到椭圆孔尺寸影响;随着声子场载荷的增大,无量纲能量释放率先减小后增加,最后趋于稳定;无量纲能量释放率随相位子场载荷的增大单调减小,非常小和非常大的声子场载荷(或相位子场载荷)屏蔽了相位子场载荷(或声子场载荷)的影响。  相似文献   

15.
A dislocation-density based multiple-slip crystalline plasticity formulation, a dislocation-density grain boundary (GB) interaction scheme, and an overlapping fracture method were used to investigate crack nucleation and propagation in martensitic steel with retained austenite for both quasi-static and dynamic loading conditions. The formulation accounts for variant morphologies, orientation relationships, and retained austenite that are uniquely inherent to lath martensitic microstructures. The interrelated effects of dislocation-density evolution ahead of crack front and the variant distribution of martensitic blocks on crack nucleation and propagation are investigated. It is shown that dislocation-density generation ahead of crack front can induce dislocation-density accumulations and plastic deformation that can blunt crack propagation. These predictions indicate that variant distribution of martensitic blocks can be optimized to mitigate and potentially inhibit material failure.  相似文献   

16.
This paper studies the propagation of a plane-strain fluid-driven fracture with a fluid lag in an elastic solid. The fracture is driven by a constant rate of injection of an incompressible viscous fluid at the fracture inlet. The leak-off of the fracturing fluid into the host solid is considered negligible. The viscous fluid flow is lagging behind an advancing fracture tip, and the resulting tip cavity is assumed to be filled at some specified low pressure with either fluid vapor (impermeable host solid) or pore-fluids infiltrating from the permeable host solid. The scaling analysis allows to reduce problem parametric space to two lumped dimensionless parameters with the meaning of the solid toughness and of the tip underpressure (difference between the specified pressure in the tip cavity and the far field confining stress). A constant lumped toughness parameter uniquely defines solution trajectory in the parametric space, while time-varying lumped tip underpressure parameter describes evolution along the trajectory. Further analysis identifies the early and large time asymptotic states of the fracture evolution as corresponding to the small and large tip underpressure solutions, respectively. The former solution is obtained numerically herein and is characterized by a maximum fluid lag (as a fraction of the crack length), while the latter corresponds to the zero-lag solution of Spence and Sharp [Spence, D.A., Sharp, P.W., 1985. Self-similar solution for elastohydrodynamic cavity flow. Proc. Roy. Soc. London, Ser. A (400), 289–313]. The self-similarity at small/large tip underpressure implies that the solution for crack length, crack opening and net fluid pressure in the fluid-filled part of the crack is a given power-law of time, while the fluid lag is a constant fraction of the increasing fracture length. Evolution of a fluid-driven fracture between the two limit states corresponds to gradual expansion of the fluid-filled region and disappearance of the fluid lag. For small solid toughness and small tip underpressure, the fracture is practically devoid of fluid, which is localized into a narrow region near the fracture inlet. Corresponding asymptotic solution on the fracture lengthscale corresponds to that of a crack loaded by a pair of point forces which magnitude is determined from the coupled hydromechanical solution in the fluid-filled region near the crack inlet. For large solid toughness, the fluid lag is vanishingly small at any underpressure and the solution is adequately approximated by the zero-lag self-similar large toughness solution at any stage of fracture evolution. The small underpressure asymptotic solutions obtained in this work are sought to provide initial condition for the propagation of fractures which are initially under plane-strain conditions.  相似文献   

17.
焊接热影响区断裂性能试验研究   总被引:4,自引:0,他引:4  
钢框架梁柱节点在最近几次地震中经历了大量断裂破坏现象。可以采用杆端非线性弹簧模型对这种破坏模式进行数值模拟。为了确定断裂分析模型的参数,本文进行了结构钢(Q235c,Q345c)焊接热影响区断裂性能试验研究,获得了两种材料在焊接热影响区的JR阻力曲线。通过比较不同的断裂准则,考虑了裂纹失稳扩展前的稳态裂纹累计,根据J积分撕裂模量法建立了裂纹失稳的失效评定图。采用两种材料分别制作了一组外形尺寸一致,初始裂纹尺寸不同的单边裂纹焊接板,测出相应的极限拉伸应力,并和理论曲线进行了对比。最后,对于本文研究结果的适用范围做了说明。  相似文献   

18.
A heterogeneous fracture approach is presented for modeling asphalt concrete that is composed of solid inclusions and a viscous matrix, and is subjected to mode-I loading in the fracture test configuration. A heterogeneous fracture model, based on the discrete element method (DEM), is developed to investigate various fracture toughening mechanisms of asphalt materials using a high-resolution image processing technique. An energy-based bilinear cohesive zone model is used to model the crack initiation and propagation of materials, and is implemented as a user-defined model within the discrete element method. Experimental fracture tests are performed to investigate various fracture behavior of asphalt concrete and obtain material input parameters for numerical models. Also, bulk material properties are necessary for each material phase for heterogeneous numerical models; these properties are determined by uniaxial complex modulus tests and indirect tensile strength tests. The main objective of this study is to integrate the experimental tests and numerical models in order to better understand the fracture mechanisms of asphaltic heterogeneous materials. Experimental results and numerical simulations are compared at different test conditions with excellent agreement. The heterogeneous DEM fracture modeling approach has the potential capability to understand various crack mechanisms of quasi-brittle materials.  相似文献   

19.
Effects of magnetic field on fracture toughness of soft ferromagnetic materials were studied using experimental techniques and theoretical models. The manganese–zinc ferrite with a single-edge-notch-beam (SENB) were chosen to be the specimen and the Vickers’ indentation specimen subjected to a magnetic field were chosen to be the specimens. Results indicate that there is no significant variations of the measured fracture toughness of the manganese–zinc ferrite ceramic in the presence of the magnetic field. The theoretical model involves an anti-plane shear crack with finite length in an infinite magnetostrictive body where an in-plane magnetic field prevails at infinity. Magnetoelasticity is used. The crack-tip elastic field is different from that of the classical mode III fracture problem. Furthermore, the magnetoelastic fracture of the soft ferromagnetic material was studied by solving the stress field for a soft ferromagnetic plane with a center-through elliptical crack. The stress field at the tip of a slender elliptical crack is obtained for which only external magnetic field normal to the major axis of the ellipse is applied at infinity. The results indicate that the near field stresses are governed by the magnetostriction and permeability of the soft ferromagnetic material. The induction magnetostrictive modulus is a key parameter for finding whether magnetostriction or magnetic-force-induced deformation is dominant near the front an elliptically-shaped crack. The influence of the magnetic field on the apparent toughness of a soft ferromagnetic material with a crack-like flaw can be regarded approximately in two ways: one possesses a large induction magnetostrictive modulus and the other has a small modulus. Finally, a small-scale magnetic-yielding model was developed on the basis of linear magnetization to interpret the experimental results related to the fracture of the manganese–zinc ferrite ceramics under magnetic field. Studied also is the fracture test of the soft ferromagnetic steel with compact tension specimens published in the existing literature.  相似文献   

20.
The nucleation of a Mode-I Zener crack from a wedge disclination dipole in the presence of a circular inhomogeneity is investigated. It is assumed that the disclination dipole and the nucleated Zener crack are along the radial direction of the inhomogeneity. Two cases are studied herein, i.e., the positive or negative wedge disclination of the dipole locates nearer to the inhomogeneity respectively. In order to investigate how various factors such as the elastic mismatch between the inhomogeneity and the matrix influence the nucleation of the Zener crack, the Stress Intensity Factor (SIF) at the sharp tip of the Zener crack is determined for different sets of geometric and material parameters with the distributed dislocation technique. The formulated singular integral equations are then solved numerically. Our results indicate that a nearby ‘hard’ inhomogeneity (having a higher shear modulus than the matrix) is beneficial to the crack nucleation for the first case (the positive disclination locates nearer to the inhomogeneity) while it retards the crack nucleation for the second case (the negative disclination locates nearer to the inhomogeneity). A nearby ‘soft’ inhomogeneity is helpful to the crack nucleation for the second case while it has inverse effects on the crack nucleation for the first case. This phenomenon can be explained with the concept of material force. The characteristics of the crack nucleation and the effects of the disclination strength, the distance between the inhomogeneity and the dipole, the disclination dipole arm length and inhomogeneity size on the crack nucleation are also systematically studied. The obtained results are helpful to characterize and enhance the strength of precipitate alloys and particle reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号