首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薄膜/基底系统在信息科学以及微电子机械系统中有着十分重要的地位.薄膜中常会有压或拉的残余应力,因此薄膜/基底结构通常是工作在残余应力以及外加应力的联合作用下.根据结构的功用不同,其载荷方式也有不同,从而也导致了不同的破坏模式.压缩载荷下的脱粘屈曲是薄膜基底结构主要的破坏形式之一.本文使用磁控溅射镀膜技术,制作了压缩薄膜...  相似文献   

2.
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument com- bined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo-Hookean material model using finite element simulations.  相似文献   

3.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

4.
基底上薄膜结构中的过大残余压应力常常通过屈曲不稳定性诱发薄膜结构和功能的失效。屈曲不稳定性、演化与斑图形成是近年来非线性力学研究的热点。此类屈曲不稳定性受薄膜-基底的力学性质以及界面相互作用影响,进而呈现出复杂的屈曲模式如褶皱、翘曲和折痕等。论文简要综述褶皱、翘曲和折痕等屈曲模式的形成机制、影响因素和后屈曲形貌相关方面的进展。褶皱部分,重点介绍了褶皱的形成、多级褶皱结构、局域化的褶皱、各向异性褶皱和曲面上的褶皱。翘曲部分,介绍了翘曲结构包括一维翘曲结构、“电话线”屈曲泡,网络状屈曲泡等的形成与生长过程,并讨论了曲面几何、界面滑移、开裂等因素的影响。折痕及其它复杂屈曲模式部分,介绍了折痕、叠痕及隆起失稳的形成机制与临界条件.  相似文献   

5.
The buckling and post-buckling of clamped circular plate subjected to distributed radial compressed load is presented by using the high-order perturbation analysis and shooting method. The sixth-order solution shows good agreement with the FEM results in [11]. The results in this paper are applied to investigate the buckling and growth of pressed thin film delamination in the film/substrate system. Under a certain residual pressure in the thin film, two characteristic blister radiiR c andR g, the critical radius and growing radius respectively, are obtained. The numerical result shows that the growth criterion of delamination in [9,10] is not perfect. In variant residual stress or interface toughness, the conditions of no growth, stable growth and unstable growth of the delamination are obtained by comparing the driving force at the interface crack tip with the interface toughness.This project is supported by National Natural Science Foundation of China.  相似文献   

6.
Atomistic simulations of the evolution of a strained thin film on a substrate has been reported and the formation of dislocations has been observed in the film/substrate interface after the film has buckled. In the framework of the linear elasticity theory, an analytical model has been developed to explain the buckle effect on the formation of the dislocations. A stability diagram with respect to the buckling and dislocation emission phenomena is finally presented for the film as a function of the uniaxial strain and the Burgers vector.  相似文献   

7.
圆形脱层的轴对称屈曲及扩展分析   总被引:9,自引:0,他引:9  
利用高阶摄动结合打靶法,分析了固支圆板在均匀径向力作用下的轴对称屈曲和过屈曲,所得结果与文(6)的FEM结构吻合得很好,应用于薄膜-基底结构,研究了受压薄膜脱层的屈曲、扩展问题,得到了在一定的残余压应力作用下,脱层屈曲的临界尺寸Rc和扩展尺寸Rg。  相似文献   

8.
Many soft materials and biological tissues are featured with the tension–compression asymmetry of constitutive relations. The surface wrinkling of a stiff thin film lying on a compliant substrate is investigated through theoretical analysis and numerical simulations. It is found that the tension–compression asymmetry of the soft substrate not only affects the critical strain of buckling but, more importantly, may also influence the wrinkling pattern that occurs in the film–substrate system under specified loading conditions. Due to this mechanism, the thin film subjected to equi-biaxial compression may first buckle into a hexagonal array of dimples or bulges, instead of the checkerboard pattern, and consequently evolve into labyrinths with further loading. Under non-equi-biaxial compression, the system may buckle either into a parallel bead-chain pattern or a stripe pattern, depending on the substrate nonlinearity and the loading biaxiality. Phase diagrams are established for the wrinkling patterns in a wide range of geometric and mechanical parameters, which facilitate the design of surface patterns with desired properties and functions.  相似文献   

9.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

10.
The topology of the telephone cord buckling of compressed diamond-like carbon films (DLC) on glass substrates has been characterized with atomic force microscopy (AFM) and with the focused ion beam (FIB) imaging system. The profiles of the several buckles have been measured by AFM to establish the symmetry of each repeat unit, revealing similarity with a circular buckle pinned at its center. By making parallel cuts through the buckle in small, defined locations, straight-sided buckles have been created on the identical films, enabling the residual stress in the film to be determined from the profile.It has been shown that the telephone cord topology can be effectively modeled as a series of pinned circular buckles along its length, with an unpinned circular buckle at its front. The unit segment comprises a section of a full circular buckle, pinned to the substrate at its center. The model is validated by comparing radial profiles measured for the telephone cord with those calculated for the pinned buckle, upon using the residual stress in the film, determined as above. Once validated, the model has been used to determine the energy release rate and mode mixity, G(ψ).The results for G(ψ) indicate that the telephone cord configuration is preferred when the residual stress in the DLC is large, consistent with observations that straight-sided buckles are rarely observed, and, when they occur, are generally narrower than telephone cords. Telephone cords are observed in many systems, and can be regarded as the generic morphology. Nevertheless, they exist subject to a limited set of conditions, residing within the margin between complete adherence and complete delamination, provided that the interface has a mode II toughness low enough to ensure that the buckle crack does not kink into the substrate.  相似文献   

11.
When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.  相似文献   

12.
Graded materials are multiphase composites with continuously varying thermophysical properties. The concept provides material scientists and engineers with an important tool to develop new materials tailored for some specific applications. One such application of this new class of materials is as top coats or interfacial regions in thermal barrier systems. A widely observed failure mode in these layered materials is known to be interfacial cracking that leads to spallation. In many cases it is the buckling instability of coating under mechanically or thermally induced compressive stresses that triggers spallation. Under in-plane loading since the linear elastic small deformation theory gives only a trivial solution, in this study the plane strain interface crack problem for a graded coating bonded to a homogeneous substrate is formulated by using a kinematically nonlinear continuum theory. Both the instability and the postbuckling problems are considered. The main objective of the study is the investigation of the influence of material nonhomogeneity, kinematic nonlinearity and plate approximation on the critical instability load and on such fracture mechanics parameters as strain energy release rate, stress intensity factors and crack opening displacements.  相似文献   

13.
The macroscopic pre-cracked line scratch test (MPLST), in which a debonded edge of a film is loaded in in-plane compression, has been modeled as a generic, coupled fracture–buckle problem using simple beam theory. Near crack-tip beam rotation (also called root rotation in literature), which always exists due to the eccentric loading in this type of test, has been incorporated into the governing equations. An analytical solution to the augmented problem has been derived. It is found that the near-tip rotation can introduce pre-buckle bending in the film. One important consequence of this pre-buckle bending is that it leads to the reduction of the critical buckling condition. This agrees well with the results of [Int. J. Fract. 113 (2002) 39] obtained by solving the full elastic field near the crack-tip. Furthermore, the pre-buckle bending moment at crack-tip remains negative (leading to crack closure) as long as the pre-buckle crack length is small, but it becomes positive (leading to crack opening) at larger pre-buckle crack length. The negative bending moment causes the crack-tip energy release rate to decrease as the crack propagates, which results in a stable pre-buckle crack growth. Once it becomes positive, however, the bending moment causes crack-tip energy release rate to increase rapidly as crack length increases and hence leads to an unstable (pre-buckle) crack growth. Further, the nominal phase angle is initially larger than the classic prediction of 52.1° owing to the existence of the negative crack-tip bending moment, but it drops quickly upon approaching the buckle point. All these results are confirmed by a rigorous 2D FEM calculation using cohesive zone modeling (CZM) approach. Finally the derived analytical solution has been used to analyze a set of PLST data reported in the literature. It has been demonstrated that plasticity in the adhesive layer and in the bonded film is responsible for the strong R-curve toughening characteristics in the deduced interface toughness data. It has also been shown that, once the deduced interface toughness is incorporated into a CZM simulation, both the axial loading and buckling point can be accurately predicted.  相似文献   

14.
The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The influence of connecting stiffness on the critical velocity is investigated with varied impactor mass and buckling time. The influences of rod length and rod mass on the critical velocity are also discussed. It is found that greater connecting stiffness leads to larger stress amplitude, and further results in lower critical velocity. It is particularly noteworthy that when the connecting stiffness is less than a certain value,dynamic buckling only occurs before stress wave reflects off the connecting end. It is also shown that longer rod with larger slenderness ratio is easier to buckle, and the critical velocity for a larger-mass rod is higher than that for a lighter rod with the same geometry.  相似文献   

15.
杨洪刚  李曙  刘阳  王鹏 《摩擦学学报》2009,29(4):293-298
对TiN膜/碳钢基材体系摩擦磨损过程的有限元模拟表明:磨痕边缘的多种应力集中、磨痕内外的张应力、膜/基界面切应力,都将影响体系的摩擦学行为.用销/盘试验验证了有限元模拟结果,根据对膜层中裂纹的萌生、扩展和体系的损伤、破坏情况分析,摩擦磨损过程分为磨合、稳定磨损、膜层失稳、体系失效阶段.提出了小载荷摩擦磨损下过软基材的膜/基体系失效机制,即膜层在集中应力和张应力作用下发生裂纹萌生和扩展的脆性破坏,其中,由于体系变形引起的磨痕边缘应力集中对膜层早期损伤进而导致体系磨损失效具有最重要作用.  相似文献   

16.
微尺度金属薄膜的脱粘和屈曲严重影响着膜基结构的性能和使用寿命。本文对微尺度的金属铜薄膜在残余应力和外部压力共同作用下的脱粘屈曲和后屈曲模式进行了研究,用自行设计的单轴对称加载装置进行压力加载,用一台光学显微镜观察薄膜表面的屈曲形貌。在外力作用下薄膜会出现垂直于加载方向的直线型屈曲,但在外力卸载过程中该屈曲并不稳定,会演化成电话线型屈曲,完全卸载后形成泡状屈曲。再次加载后,恢复到直线型屈曲。研究表明:直线型屈曲的不稳定现象主要与薄膜的残余应力、基底的泊松比以及薄膜沿纵向与横向的应力比有关。  相似文献   

17.
The present work is concerned with an analysis of progressive interface failure under normal compressive stress and varying shear stress using the cohesive crack model. The softening model is assumed and frictional linear stress at contact is accounted for. A monotonic loading in anti-plane shear of an elastic plate bonded to a rigid substrate is considered. An analytical solution is obtained by neglecting the effect of minor shear stress component in the plate. The elastic and plate interface compliances are included into the analysis. Three types of solutions are distinguished in the progressive delamination analysis, namely short, medium and long plate solutions. The analysis of quasi-static progressive delamination process clarifies the character of critical points and post-critical response of the plate. The analytical solution provides a reference benchmark for numerical algorithms of analysis of progressive interface delamination. The case of a rigid–softening interface was treated in a companion paper, where also cyclic loading was considered.  相似文献   

18.
Mechanical characterization of sub-micron thin films or similar small scale structures have been a continuous challenge to the mechanics community due to the difficulty in accurately quantizing the applied load and the resulted deformation. In this paper, a new force-domain analog-to-digital converter (F-D ADC) created from the concept of Flash ADC in electronics is developed to perform thin film tensile tests. The key component of the F-D ADC is a quantizer-array of microfabricated buckling beams of varying lengths. During testing, the tensile force applied in the test specimen is converted to the compressive force in the quantizer beam array and digitized by using the critical buckling load of the beams as they progressively buckle with increasing force amplitude. The deformation of the specimen is controlled by the piezoelectric actuator. Successful testing of (110) single crystal silicon and titanium/nickel (Ti/Ni) multilayer thin film specimens demonstrated the feasibility of this novel F-D ADC concept.  相似文献   

19.
This study evaluates the stress behavior of a cracked film–substrate medium by applying the multi-region boundary element method. Four problems addressed herein are the crack tip within a film, the crack tip terminating at the interface, interface debonding, and the crack penetrating into the substrate. The multi-region boundary element method is initially developed and, then, the stress intensity factors or the energy release rates are evaluated according to the different stress singularities of the four considered problems. These results indicate that the stress intensity factors or the energy release rates of the four problems rely not only on the different elastic mismatches and crack lengths, but also on the thickness ratio of the film and the substrate.  相似文献   

20.
Adhesive contact between a rigid sphere and an elastic film on an elastic–perfectly plastic substrate was examined in the context of finite element simulation results. Surface adhesion was modeled by nonlinear springs obeying a force-displacement relationship governed by the Lennard–Jones potential. A bilinear cohesive zone law with prescribed cohesive strength and work of adhesion was used to simulate crack initiation and growth at the film/substrate interface. It is shown that the unloading response consists of five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution (delamination), film elastic bending, and abrupt surface separation (jump-out), with plastic deformation in the substrate occurring only during damage initiation. Substrate plasticity produces partial closure of the cohesive zone upon full unloading (jump-out), residual tensile stresses at the front of the crack tip, and irreversible downward bending of the elastic film. Finite element simulations illustrate the effects of minimum surface separation (i.e., maximum compressive surface force), work of adhesion and cohesive strength of the film/substrate interface, substrate yield strength, and initial crack size on the evolution of the surface force, residual deflection of the elastic film, film-substrate separation (debonding), crack-tip opening displacement, and contact instabilities (jump-in and jump-out) during a full load–unload cycle. The results of this study provide insight into the interdependence of contact instabilities and interfacial damage (cracking) encountered in layered media during adhesive contact loading and unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号