首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.  相似文献   

2.
Stochastic epidemics and rumours on finite random networks   总被引:3,自引:0,他引:3  
In this paper, we investigate the stochastic spread of epidemics and rumours on networks. We focus on the general stochastic (SIR) epidemic model and a recently proposed rumour model on networks in Nekovee et al. (2007) [3], and on networks with different random structures, taking into account the structure of the underlying network at the level of the degree–degree correlation function. Using embedded Markov chain techniques and ignoring density correlations between neighbouring nodes, we derive a set of equations for the final size of the epidemic/rumour on a homogeneous network that can be solved numerically, and compare the resulting distribution with the solution of the corresponding mean-field deterministic model. The final size distribution is found to switch from unimodal to bimodal form (indicating the possibility of substantial spread of the epidemic/rumour) at a threshold value that is higher than that for the deterministic model. However, the difference between the two thresholds decreases with the network size, n, following a n−1/3 behaviour. We then compare results (obtained by Monte Carlo simulation) for the full stochastic model on a homogeneous network, including density correlations at neighbouring nodes, with those for the approximating stochastic model and show that the latter reproduces the exact simulation results with great accuracy. Finally, further Monte Carlo simulations of the full stochastic model are used to explore the effects on the final size distribution of network size and structure (using homogeneous networks, simple random graphs and the Barabasi–Albert scale-free networks).  相似文献   

3.
Andrzej Grabowski 《Physica A》2007,385(1):363-369
We study a large social network consisting of over 106 individuals, who form an Internet community and organize themselves in groups of different sizes. On the basis of the users’ list of friends and other data registered in the database we investigate the structure and time development of the network. The structure of this friendship network is very similar to the structure of different social networks. However, here a degree distribution exhibiting two scaling regimes, power-law for low connectivity and exponential for large connectivity, was found. The groups size distribution and distribution of number of groups of an individual have power-law form. We found very interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task.  相似文献   

4.
The topology of interbank payment flows   总被引:1,自引:0,他引:1  
We explore the network topology of the interbank payments transferred between commercial banks over the Fedwire®® Funds Service. We find that the network has both a low average path length and low connectivity. The network includes a tightly connected core of banks to which most other banks connect. The degree distribution is scale free over a substantial range. We find that the properties of the network changed considerably in the immediate aftermath of the events of September 11, 2001.  相似文献   

5.
We consider the coupled dynamics of the adaption of network structure and the evolution of strategies played by individuals occupying the network vertices. We propose a computational model in which each agent plays a n-round Prisoner's Dilemma game with its immediate neighbors, after that, based upon self-interest, partial individuals may punish their defective neighbors by dismissing the social tie to the one who defects the most times, meanwhile seek for a new partner at random from the neighbors of the punished agent. It is found that the promotion of cooperation is attributed to the entangled evolution of individual strategy and network structure. Moreover, we show that the emerging social networks exhibit high heterogeneity and disassortative mixing pattern. For a given average connectivity of the population and the number of rounds, there is a critical value for the fraction of individuals adapting their social interactions, above which cooperators wipe out defectors. Besides, the effects of the average degree, the number of rounds, and the intensity of selection are investigated by extensive numerical simulations. Our results to some extent reflect the underlying mechanism promoting cooperation.  相似文献   

6.
7.
Alzheimer’s disease (AD) is a neurodegenerative disorder which has become an outstanding social problem. The main objective of this study was to evaluate the alterations that dementia due to AD elicits in the distribution of functional network weights. Functional connectivity networks were obtained using the orthogonalized Amplitude Envelope Correlation (AEC), computed from source-reconstructed resting-state eletroencephalographic (EEG) data in a population formed by 45 cognitive healthy elderly controls, 69 mild cognitive impaired (MCI) patients and 81 AD patients. Our results indicated that AD induces a progressive alteration of network weights distribution; specifically, the Shannon entropy (SE) of the weights distribution showed statistically significant between-group differences (p < 0.05, Kruskal-Wallis test, False Discovery Rate corrected). Furthermore, an in-depth analysis of network weights distributions was performed in delta, alpha, and beta-1 frequency bands to discriminate the weight ranges showing statistical differences in SE. Our results showed that lower and higher weights were more affected by the disease, whereas mid-range connections remained unchanged. These findings support the importance of performing detailed analyses of the network weights distribution to further understand the impact of AD progression on functional brain activity.  相似文献   

8.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to disentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter α which sets the likelihood of the higher degree node giving its state to the other node. Traditional voter model behaviors can be recovered within the model, as well as the invasion process. We find that on a complete bipartite network, the voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of α, exit time is dominated by diffusive drift of the system state, but as the high-degree nodes become more influential, the exit time becomes dominated by frustration effects dependent on the exact topology of the network.  相似文献   

9.
We derive percolation results in the continuum plane that lead to what appears to be a general tendency of many stochastic network models. Namely, when the selection mechanism according to which nodes are connected to each other, is sufficiently spread out, then a lower density of nodes, or on average fewer connections per node, are sufficient to obtain an unbounded connected component. We look at two different transformations that spread-out connections and decrease the critical percolation density while preserving the average node degree. Our results indicate that real networks can exploit the presence of spread-out and unreliable connections to achieve connectivity more easily, provided they can maintain the average number of functioningconnections per node.  相似文献   

10.
Opinions of individuals in real social networks are arguably strongly influenced by external determinants, such as the opinions of those perceived to have the highest levels of authority. In order to model this, we have extended an existing model of consensus formation in an adaptive network by the introduction of a parameter representing each agent’s level of ‘authority’, based on their opinion relative to the overall opinion distribution. We found that introducing this model, along with a randomly varying opinion convergence factor, significantly impacts the final state of converged opinions and the number of interactions required to reach that state. We also determined the relationship between initial and final network topologies for this model, and whether the final topology is robust to node removals. Our results indicate firstly that the process of consensus formation with a model of authority consistently transforms the network from an arbitrary initial topology to one with distinct measurements in mean shortest path, clustering coefficient, and degree distribution. Secondly, we found that subsequent to the consensus formation process, the mean shortest path and clustering coefficient are less affected by both random and targeted node disconnection. Speculation on the relevance of these results to real world applications is provided.  相似文献   

11.
Social networks transmitting covert or sensitive information cannot use all ties for this purpose. Rather, they can only use a subset of ties that are strong enough to be “trusted”. This paper addresses whether it is still possible, under this restriction, for information to be transmitted widely and rapidly in social networks. We use transitivity as evidence of strong ties, requiring one or more shared contacts in order to count an edge as strong. We examine the effect of removing all non-transitive ties in two real social network data sets, imposing varying thresholds in the number of shared contacts. We observe that transitive ties occupy a large portion of the network and that removing all other ties, while causing some individuals to become disconnected, preserves the majority of the giant connected component. Furthermore, the average shortest path, important for the rapid diffusion of information, increases only slightly relative to the original network. We also evaluate the cost of forming transitive ties by modeling a random graph composed entirely of closed triads and comparing its connectivity and average shortest path with the equivalent Erdös–Renyi random graph. Both the empirical study and random model point to a robustness of strong ties with respect to the connectivity and small world property of social networks.  相似文献   

12.
《Physica A》2006,365(2):549-555
In this paper we present a model of immune system development when subjected to repeated infection events. The emergence of a complex network in shape space is outlined, the edges of which are characterised by both direction and weight. Such a network model supports a more comprehensive classification of immune function than was previously available in that the efficacy of infection elimination is directly dependent on both connectivity and weight distributions. The network model which emerges possesses both small-world characteristics, as well as a truncated scale-free degree and weight distribution commonly observed in social network models.  相似文献   

13.
Experimentally derived emission characteristics — the transfer ratio, angular distribution, energy distributionsN(E) andN(E x ) and energy-angular distribution of emitted electrons — are discussed on the basis of our theoretical model of the sandwich cathode. It was found that electrons during their transfer through the cathode are scattered in the dielectric layer mostly by interactions with optical phonons and traps and in the top metal electrode by collisions with conduction electrons. Comparison of our model with experimental results gave us approximate values of mean free paths and further cathode parameters.  相似文献   

14.
This Letter is focused on the impact of network topology on the site percolation. Specifically, we study how the site percolation threshold depends on the network dimensions (topological d and fractal D), degree of connectivity (quantified by the mean coordination number Z), and arrangement of bonds (characterized by the connectivity index Q also called the ramification exponent). Using the Fisher's containment principle, we established exact inequalities between percolation thresholds on fractal networks contained in the square lattice. The values of site percolation thresholds on some fractal lattices were found by numerical simulations. Our findings suggest that the most relevant parameters to describe properly the values of site percolation thresholds on fractal networks contained in square lattice (Sierpiński carpets and Cantor tartans) and based on the square lattice (weighted planar stochastic fractal and Cantor lattices) are the mean coordination number and ramification exponent, but not the fractal dimension. Accordingly, we propose an empirical formula providing a good approximation for the site percolation thresholds on these networks. We also put forward an empirical formula for the site percolation thresholds on d-dimensional simple hypercubic lattices.  相似文献   

15.
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.  相似文献   

16.
甘正宁  马军  张国勇  陈勇 《物理学报》2008,57(9):5400-5406
利用数值计算和分析,研究了螺旋波失稳与重联概率p之间的关系.通过对基于FitzHugh-Nagumo神经元模型的小世界网络的计算和分析,发现螺旋波的小世界效应失稳具有全局性作用和失稳后再激发作用等特点,是不同于爱克豪斯(Eckhaus)失稳和多普勒(Doppler)失稳的又一种新的重要失稳方式. 关键词: 螺旋波 失稳 小世界网络 重联概率  相似文献   

17.
We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader (SS) and the spreader-stifler (SR) interactions have the same rate α, we define α(1) and α(2) for SS and SR interactions, respectively. The effect of variation of α(1) and α(2) on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor.  相似文献   

18.
19.
Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter q. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter q. Interestingly, we show that by adjusting q, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from ‘large’ to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.  相似文献   

20.
We study properties of five different social systems: (i) internet society of friends consisting of over 106 people, (ii) social network consisting of 3 × 104 individuals, who interact in a large virtual world of Massive Multiplayer Online Role Playing Games (MMORPGs), (iii) over 106 users of music community website, (iv) over 5 × 106 users of gamers community server and (v) over 0.25 × 106 users of books admirer website. Individuals included in large social network form an Internet community and organize themselves in groups of different sizes. The destiny of those systems, as well as the method of creating of new connections, are different, however we found that the properties of these networks are very similar. We have found that the network components size distribution follow the power-law scaling form. In all five systems we have found interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task, how much time they devote to it and how fast they are making friends. It is surprising that the time evolution of an individual connectivity is very similar in each system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号