首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 58 毫秒
1.
Chaboche率相关本构模型的数值积分算法   总被引:3,自引:0,他引:3  
为验证Chaboche率相关本构模型对循环塑性行为的描述能力,研究了有限元计算中本构关系的数值积分过程和Newton-Baphson迭代算法.编写了ABAQUS材料用户子程序UMAT,在此基础上对316不锈钢材料在600℃下的循环特性进行了有限元数值模拟.结果表明:该模型对材料率相关性、对称拉压循环特性及棘轮效应的描述...  相似文献   

2.
张艺潇  赵社戌 《上海交通大学学报》2007,41(6):1008-1011,1016
考虑非比例加载情况下金属材料塑性循环强化特性的本构描述,为反映由于非比例加载而引起材料的附加等向强化及异向强化效应,提出在Valanis的塑性内时响应方程中引入与加载路径几何性质有关的内结构张量,建立了新的非比例循环塑性本构模型.其中,材料强化程度采用沿路径法线方向的塑性应变分量描述.用所建模型对304不锈钢材料在一些典型非比例循环加载路径下的响应进行了理论预测,并与相关文献中的实验结果进行了比较,结果令人满意.  相似文献   

3.
岩体结构面三维循环加载本构关系   总被引:2,自引:0,他引:2  
研究岩体结构面在循环加载条件下的三维力学性质。通过对二维数值模型合理推广,建立三维本构模型。法向加卸载本构为逐步硬化的双曲线函数。切向模型基于加载为双曲线函数、卸载为线性函数的本构方程建立,并引入剪切方向角描述三维切向接触特性。考虑峰值剪切现象,以切向塑性功为主要参数,建立峰值摩擦角和剪胀角的磨损方程。以初始剪胀角和残余剪胀角为主要参数建立剪胀方程。数值计算结果与试验曲线的对比表明,该模型体现了各向异性结构面的非线性受力变形特性、表面磨损和不均匀剪胀行为,能较好模拟三维循环加载本构关系。  相似文献   

4.
分析介绍了Collins提出的土体热力学模型.该模型不仅结构简单,满足热力学原理,且通过参数的不同取值,可得到包括修正剑桥模型在内的不同屈服面的形式,具有较大的适应性和灵活性.基于微细观力学原理,深入分析了模型参数的物理意义,并导出了模型的应力应变关系.编制了该模型的点积分程序,选用具有强减缩特性的淤泥质软黏土的偏压固结不排水三轴试验结果,通过对试验结果的模拟,验证了模型的适应性与有效性.  相似文献   

5.
为了更准确地模拟往复荷载作用下金属材料的劣化,在大变形弹塑性理论及损伤力学理论的基础上,采用双线性混合强化模型及Lemaitre损伤模型建立了可考虑损伤发展的混合强化弹塑性本构模型.提出了利用单轴拉伸材料常数计算损伤材料参数的近似方法.利用有限元程序ANSYS的用户可编程特性,将所编制的材料模型子程序嵌入ANSYS程序...  相似文献   

6.
珠光体钢由众多随机取向的珠光体团构成,每一珠光体团又包含了许多交替叠合的渗碳体片和铁素体片。实验表明,具有较细片层间距的珠光体钢具有较好的综合力学性能,较高的耐磨性的抗接触疲劳性能。基于考虑此类材料中由于两相变形的不协调而存在的相间的相互约束,提出了一种应变等效非局部本构模型,在不改变材料局部参数的前提下,通过引入等效应变较好地描述了作为珠光体材料微结构基本参数的片层间距对其宏观响应特性的影响。对具有不同平均片层间距的热轧PD3和离线全长热处理PD3珠光体钢轨钢的非对称循环塑性进行了分析,得到了与实验相吻合的结果。  相似文献   

7.
多晶金属在非比例循环过程中的强化与其内部组织结构的变化密切相关。根据循环过程中金属位错子结构的变化,将强化函数分解为乘积形式,各因子分别决定于非强化区尺度与非比例度,由此将各种不同的强化机制嵌入热力学相容的本构方程。对304与316不锈钢室温下二维非比例循环的本构响应进行了分析,并与Benallal等、Tanaka等、和Ohashi等的实验结果进行比较,符合得很好。  相似文献   

8.
在土体的剪切变形过程中,当主应力方向产生旋转时,主应变增量方向与主应力方向之间存在显著的非共轴现象.同时,机动摩擦角、膨胀角随着累积塑性偏应变的增长而增加,土体具有应变硬化的特点.传统的弹塑性本构模型不能够反映上述现象对地基承载力特性的影响.为了能够对地基承载力问题进行合理的分析,建立了一种非共轴应变硬化模型,并将该模型运用到有限元计算中.通过与三轴试验和离心机模型试验结果进行对比,对该模型在数值应用中的合理性进行了验证.研究结果表明,该模型能够对不同围压下的应力-应变关系进行预测.对浅基础承载力问题进行研究时,非共轴应变硬化模型的计算结果比传统弹塑性本构模型更加接近于离心机试验结果,验证了该模型的数值应用合理性.  相似文献   

9.
为了研究防护工程中钢管活性粉末混凝土(RPC)构件的抗冲击及抗火(高温)性能,采用74mm分离式霍普金森压杆(SHPB)试验装置对27块20~300℃加热后的钢管RPC进行了不同应变率的冲击压缩试验,得到了高温后钢管RPC的动态应力-应变曲线和破坏形态。利用ANSYS软件数值模拟了高温后钢管RPC截面温度场分布,建立了高温后钢管RPC动态本构模型。结果表明,300℃高温后的钢管RPC仍具有较高的强度,较好的延性和整体性。本试验条件下,钢管RPC峰值应力和峰值应变随过火温度提高而增大。随着过火温度的提高,钢管RPC峰值应力的应变率效应有所增大,而峰值应变的应变率效应略有减弱。理论方法可以较准确地预测常温条件下钢管RPC的峰值应力和峰值应变。高温后钢管RPC动态应力-应变曲线上升段的理论曲线与试验结果吻合良好,但由于高频振荡和变形滞后的影响,曲线下降段会有一定差别。  相似文献   

10.
考虑应变率效应的混凝土动力弹塑性损伤本构模型   总被引:5,自引:0,他引:5  
通过对损伤能释放率阀值的Perzyna粘性规则化,将作者提出的混凝土静力弹塑性损伤本构模型进行了动力推广,并将二者统一为一类基于能量的弹塑性损伤本构模型.给出了建议模型的基本公式以及在不同应变率作用下混凝土材料的数值模拟结果.分析结果表明:建议模型能够很好地描述混凝土在不同应力状态下的各种典型非线性行为,包括动力作用下的应变率效应.  相似文献   

11.
膏体充填料到达采场初始温度不同是矿山存在的普遍现象,不同初始温度条件下膏体力学特性及应力-应变关系直接影响到矿山采充周期及相邻采场开采时贫化指标.通过对初始温度为2、20、35和50℃的硬化膏体进行单轴抗压强度试验,获得不同初始温度下充填体应力-应变演化曲线.根据理论推导和试验结果,建立了不同初始温度下膏体损伤本构模型,通过本构模型参数回归,提出膏体温度-时间耦合损伤本构模型.最后,采用Comsol数值模拟软件,将温度-时间耦合损伤本构模型嵌入solid mechanics模块,对单轴抗压试验进行数值模拟,模拟应力-应变曲线与试验结果较为吻合,验证了所提出本构模型的可靠性.  相似文献   

12.
针对在金属粉末注射成形中,反复试模法优化工艺参数成本高、时间长的不足,通过扩充MoldFlow MPI软件中的材料数据库,对316L不锈钢合金模芯零件进行虚拟实验研究.研究结果表明,由于熔体流动的"跑道效应",当采用单浇口注射成形时,模芯两侧熔体流动严重不平衡,端面4个波峰和波谷明显,中部芯柱出现欠注,零件中间芯轴处成形最困难.通过优化单浇口位置、数量和零件的结构设计,采用对称双浇口设计方案解决了实际生产中存在的断裂、欠注和不良流动等质量问题.  相似文献   

13.
时小惠 《科技信息》2012,(9):53-53,58
316L不锈钢是一种非常典型的奥氏体不锈钢,被广泛地用于石油、化工、电力、交通、航空、航海、能源开发以及轻工、医药等领域,它的耐磨性、耐腐蚀性、疲劳强度和亲水性等表面特性影响了不锈钢的使用。本文列举了传统不锈钢表面改性的常用方法,综述了现今316L不锈钢表面改性的各种途径及研究成果,并且展望了316L不锈钢表面改性的研究趋势。  相似文献   

14.
溶液pH值对不锈钢亚稳态孔蚀行为的影响   总被引:2,自引:0,他引:2  
用测试动电位的电流-时间曲线法研究了不锈钢在不同pH值的NaCl溶液中的亚稳态孔蚀行为.结果表明,随溶液pH值升高,316L不锈钢在NaCl溶液中的亚稳孔形核电位Em和孔蚀电位Eb均正移;不同NaCl浓度下,Em和Eb随溶液pH值的变化趋势基本一致.溶液pH值对亚稳孔形核数有明显影响,随pH值升高形核数降低.但pH值对亚稳态孔蚀过程的动力学参数,包括亚稳孔生长速度、峰值电流和平均寿命,均影响不大.  相似文献   

15.
在常压和真空条件下研究了温度与氮分压对316L不锈钢中氮溶解度的影响,钢中氮的溶解度随着温度的降低而升高,随着氮分压的增大而增大.建立了316L不锈钢氮溶解度热力学计算模型,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合.在1773~1873K条件下,生产控氮型316L不锈钢,氮分压要控制在6~28kPa以上;生产中氮型316L不锈钢,氮分压要控制在22~101kPa以上.常压下吹氮10min,钢液含氮量即可超过0.10%.  相似文献   

16.
超声喷丸处理工艺在316L不锈钢表面制备出了纳米表面晶层,对表面纳米化后和未表面纳米化的316L不锈钢试样进行拉拉低周疲劳试验,然后对试件进行表面残余应力进行测试,并对表面纳米化后材料疲劳性能的影响机理进行了初步分析探讨.研究结果表明,超声喷丸表面纳米化处理可以有效使材料在表面产生残余压应力,并使得表面晶粒细化,从而有效抑制疲劳裂缝萌生,提高材料疲劳寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号