首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

2.
A2MnB′O6 (A=Ca, Sr; B=Sb, Ta) double perovskites have been synthesized and their structural and magnetic properties have been investigated. Rietveld refinement of the powder X-ray diffraction data for Sr2MnSbO6 indicated significant ordering of Mn and Sb at the B-site while all other phases showed mostly a random distribution of the B-site cations. X-ray absorption spectroscopic data established the presence of Mn in the 3+ and Sb/Ta in the 5+ oxidation states in all the phases. Magnetic susceptibility data indicated ferromagnetic correlations for all the A2MnB′O6 phases with Weiss temperatures varying from 64 to 107 K.  相似文献   

3.
The synthesis and structural characterization of new tantalum(V) compounds containing a single hydrazido(I) ligand are reported. Hydrazinolysis of TaCl(NMe2)4 using trimethylsilyl(dimethyl)hydrazine affords the compound TaCl(NMe2)3[N(TMS)NMe2] in essentially quantitative yield. Metathetical replacement of the chloride ligand in TaCl(NMe2)3[N(TMS)NMe2] by LiNMe2 gives the all-nitrogen coordinated compound Ta(NMe2)4[N(TMS)NMe2]. VT 1H NMR studies support the existence of low-energy pathways involving rotation about the Ta–N bonds of the ancillary amido and hydrazido ligands in both hydrazido-substituted compounds. X-ray crystallographic analyses confirm the octahedral disposition about the tantalum metal in TaCl(NMe2)3[N(TMS)NMe2] and Ta(NMe2)4[N(TMS)NMe2] and the presence of an η2-hydrazido(I) ligand. Preliminary data using Ta(NMe2)4[N(TMS)NMe2] as an ALD precursor for the preparation of tantalum nitride and tantalum oxide thin films are presented.  相似文献   

4.
A novel bisphosphine ligated Ag60 nanocluster, [{Cl@Ag12}@Ag48(dppm)12], has been dis-covered and characterized by X-ray crystallography. It consists of a central chloride located inside an icosahedral silver core layer, which is further encased by a second shell of 48 silver atoms/ions, which are capped with 12 bis(diphenylphosphino)methane (dppm) ligands. Due to lack of sufficient material the cluster could not be further characterized by other methods. DFT calculations were carried out on the cation [{Cl@Ag12}@Ag48(dppm)12]+ to determine if it corresponds to a superatom with a core count of n=58. The DFT optimized structure is in agreement with X-ray ndings, but the low value of the HOMO-LUMO gap does not support superatom stability.  相似文献   

5.
The reaction of HgCl2 and Te(R)CH2SiMe3 [R = CH2SiMe3 (1), Ph (2)] in ethanol yielded a mononuclear complex [HgCl2{Te(R)CH2SiMe3}2] (R = Ph, 3a; R = CH2SiMe3, 3b). The recrystallization of 3a or 3b from CH2Cl2 produced a dinuclear complex [Hg2Cl2(μ-Cl)2{Te(R)CH2SiMe3}2] (R = Ph, 4a; R = CH2SiMe3, 4b). When 3a was dissolved in CH2Cl2, the solvent quickly removed, and the solid recrystallized from EtOH, a stable ionic [HgCl{Te(Ph)CH2SiMe3}3]Cl·2EtOH (5a·2EtOH) was obtained. Crystals of [HgCl2{Te(CH2SiMe)2}]·2HgCl2·CH2Cl2 (6b·2HgCl2·CH2Cl2) were obtained from the CH2Cl2 solution of 3b upon prolonged standing. The complex formation was monitored by 125Te-, and 199Hg NMR spectroscopy, and the crystal structures of the complexes were determined by single crystal X-ray crystallography.  相似文献   

6.
In this work Bi(SbxNbyTaz)O4 (x + y + z = 1) samples are prepared using mixed-oxide method. A pseudo-ternary phase diagram of Bi(Sb,Nb,Ta)O4 system is given below the melting point. It is composed of a monoclinic phase region, an orthorhombic phase region and a monoclinic–orthorhombic co-existing phase region. In the orthorhombic phase region, the transformation from orthorhombic to triclinic phase is found to be sensitive to the composition and sintering temperature. Both the transformation from monoclinic to orthorhombic structure and the transformation from orthorhombic to triclinic structure have been studied by the cell parameters.  相似文献   

7.
In the present work lithium (sodium) vanadium tungsten oxides with brannerite structure is refined by the Rietveld method (space group C2/m, Z=2). IR and Raman spectroscopy was used to assign vibrational bands and determine structural particularities. The diffuse reflectance spectra allow to calculate bandgap for MIVWO6(MI – Li, Na). The temperature dependences of heat capacity have been measured first in the range from 7 to 350 K for these compounds and then between 330 and 640 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity Cpo(T), enthalpy Ho(T)−Ho(0), entropy So(T)−So(0) and Gibbs function Go(T)−Ho(0), for the range from T→0 to 640 K. The differential scanning calorimetry was applied to measure decomposition temperature of compounds under study.  相似文献   

8.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

9.
Na3AZr(PO4)3 (A=Mg, Ni) phosphates were prepared at 750 °C by coprecipitation route. Their crystal structures have been refined at room temperature from X-ray powder diffraction data using Rietveld method. Li2.6Na0.4NiZr(PO4)3 was synthesized through ion exchange from the sodium analog. These materials belong to the Nasicon-type structure. Raman spectra of Na3AZr(PO4)3 (A=Mg, Ni) phosphates present broad peaks in favor of the statistical distribution in the sites around PO4 tetrahedra. Diffuse reflectance spectra indicate the presence of octahedrally coordinated Ni2+ ions.  相似文献   

10.
The novel rhenium pentahydride complex [ReH5(PPh3)2(PTA)] (2) was synthesized by dihydrogen replacement from the reaction of [ReH7(PPh3)2] with PTA in refluxing THF. Variable temperature NMR studies indicate that 2 is a classic polyhydride (T1(min) = 133 ms). This result agrees with the structure of 2, determined by X-ray crystallography at low temperature. The compound shows high conformational rigidity which allows for the investigation of the various hydride-exchanging processes by NMR methods. Reactions of 2 with equimolecular amounts of either HFIP or HBF4 · Et2O at 183 K afford [ReH5(PPh3)2{PTA(H)}]+ (3) via protonation of one of the nitrogen atoms on the PTA ligand. When 5 equivalents of HBF4 · Et2O are used, additional protonation of one hydride ligand takes place to generate the thermally unstable dication [ReH42-H2)(PPh3)2{PTA(H)}]2+ (4), as confirmed by 1H NMR and T1 analysis. IR monitoring of the reaction between 2 and CF3COOD at low temperature shows the formation of the hydrogen bonded complex [ReH5(PPh3)2{PTA?DOC(O)CF3}] (5) and of the ionic pair [ReH5(PPh3)2{PTA(D)?OC(O)CF3}] (6) preceding the proton transfer step leading to 3.  相似文献   

11.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

12.
A series of compositions with the general formula RE2Hf2O7 (RE=Dy, Ho, Er, Tm, Y and Lu) was prepared by a standard solid-state route and characterized by powder X-ray diffraction (XRD) and Raman spectroscopy. As per theoretical modeling reported in literature, some of these materials were predicted to exist in pyrochlore lattice. However, a careful X-ray diffraction, Raman spectroscopic and synchrotron radiation-XRD study revealed that under the experimental conditions used in the present investigation, out of all the RE2Hf2O7 samples only Dy2Hf2O7 has got a tendency to form a pyrochlore structure. All the other (Ho, Er, Tm, Lu, Y) hafnates crystallize in a defect-fluorite structure. In order to further ascertain these inferences, a few more RE2Hf2O7 samples (La, Nd, Sm) i.e., with larger RE3+ ions were also prepared and the results were compared.  相似文献   

13.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

14.
The reaction of Al, Ga, or In metals and H5IO6 in aqueous media at 180 °C leads to the formation of Al(IO3)3, Ga(IO3)3, or In(IO3)3, respectively. Single-crystal X-ray diffraction experiments have shown In(IO3)3 contains the Te4O9-type structure, while both Al(IO3)3 and Ga(IO3)3 are known to exhibit the polar Fe(IO3)3-type structure. Crystallographic data for In(IO3)3, trigonal, space group , a=9.7482(4) Å, c=14.1374(6) Å, V=1163.45(8) Z=6, R(F)=1.38% for 41 parameters with 644 reflections with I>2σ(I). All three iodate structures contain group 13 metal cations in a distorted octahedral coordination environment. M(IO3)3 (M=Al, Ga) contain a three-dimensional network formed by the bridging of Al3+ or Ga3+ cations by iodate anions. With In(IO3)3, iodate anions bridge In3+ cations in two-dimensional layers. Both materials contain distorted octahedral holes in their structures formed by terminal oxygen atoms from the iodate anions. The Raman spectra have been collected for these metal iodates; In(IO3)3 was found to display a distinctively different vibrational profile than Al(IO3)3 or Ga(IO3)3. Hence, the Raman profile can be used as a rapid diagnostic tool to discern between the different structural motifs.  相似文献   

15.
Colorless single crystals of Gd(IO3)3 or pale pink single crystals of Er(IO3)3 have been formed from the reaction of Gd metal with H5IO6 or Er metal with H5IO6 under hydrothermal reaction conditions at 180 °C. The structures of both materials adopt the Bi(IO3)3 structure type. Crystallographic data are (MoKα, λ=0.71073 Å): Gd(IO3)3, monoclinic, space group P21/n, a=8.7615(3) Å, b=5.9081(2) Å, c=15.1232(6) Å, β=96.980(1)°, V=777.03(5) Z=4, R(F)=1.68% for 119 parameters with 1930 reflections with I>2σ(I); Er(IO3)3, monoclinic, space group P21/n, a=8.6885(7) Å, b=5.9538(5) Å, c=14.9664(12) Å, β=97.054(1)°, V=768.4(1) Z=4, R(F)=2.26% for 119 parameters with 1894 reflections with I>2σ(I). In addition to structural studies, Gd(IO3)3, Er(IO3)3, and the isostructural Yb(IO3)3 were also characterized by Raman spectroscopy and magnetic property measurements. The results of the Raman studies indicated that the vibrational profiles are adequately sensitive to distinguish between the structures of the iodates reported here and other lanthanide iodate systems. The magnetic measurements indicate that only in Gd(IO3)3 did the 3+ lanthanide ion exhibit its full 7.9 μB Hund's rule moment; Er3+ and Yb3+ exhibited ground state moments and gap energy scales of 8.3 μB/70 K and 3.8 μB/160 K, respectively. Er(IO3)3 exhibited extremely weak ferromagnetic correlations (+0.4 K), while the magnetic ions in Gd(IO3)3 and Yb(IO3)3 were fully non-interacting within the resolution of our measurements (∼0.2 K).  相似文献   

16.
17.
Six new compounds in the A2LiMS4 (A=K, Rb, Cs; M=V, Nb, Ta) family, namely K2LiVS4, Rb2LiVS4, Cs2LiVS4, Rb2LiNbS4, Cs2LiNbS4, and Rb2LiTaS4, have been synthesized by the reactions of the elements in Li2S/S/A2S3 (A=K, Rb, Cs) fluxes at 773 K. The A and M atoms play a role in the coordination environment of the Li atoms, leading to different crystal structures. Coordination numbers of Li atoms are five in K2LiVS4, four in A2LiVS4 (A=Rb, Cs) and Cs2LiNbS4, and both four and five in Rb2LiMS4 (M=Nb, Ta). The A2LiVS4 (A=Rb, Cs) structure comprises one-dimensional chains of tetrahedra. The Rb2LiMS4 (M=Nb, Ta) structure is composed of two-dimensional layers. The Cs2LiNbS4 structure contains one-dimensional chains that are related to the Rb2LiMS4 layers. The K2LiVS4 structure contains a different kind of layer.  相似文献   

18.
Double perovskite Ca2LaSbO6, successfully synthesized by solid state reaction method, was identified by Rietveld refinements to crystallize in the monoclinic space group P21/n, which is isostructural to Ca2LaMO6 (M=Nb, Ta). Excellent red luminescence of Eu-doped Ca2LaMO6 (M=Sb, Nb, Ta) can be obtained and no luminescence quenching effect was observed when Eu-doping level reached 40%. For Ca2La0.6NbO6:0.4Eu3+, quantum efficiencies of 20.9% and 27.7% were reached to show high light conversion and bright red emission excited at 465 nm (blue light) and 534 nm (green light), respectively, comparable to the commercial phosphors. Through systemic investigation for the series of double perovskite compounds, the excellent red emission in Ca2LaMO6 is attributed to highly distorted polyhedra of EuO8 (low tolerance factor of the pervoskite), and large bond distances of La−O (low crystal field effect of the activator).  相似文献   

19.
We describe an investigation of the structure and dielectric properties of MM′O4 and MTiM′O6 rutile-type oxides for M=Cr, Fe, Ga and M′=Nb, Ta and Sb. All the oxides adopt a disordered rutile structure (P42/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies. While both the MM′O4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM′O6 oxides for M=Fe, Cr and M′=Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500 K.  相似文献   

20.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号