首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A kinetic study of copolymerization of styrene and α-methylstyrene accompanied with depropagation, initiated by n-butyilithium in cyclohexane with tetrahydrofuran as an additive polar solvent, has been performed. The various propagation rate constants of active species and the complexation equilibrium constants between different kinds of active species were determined. Furthermore, the reactivity ratios of two monomers with regard to monomeric, monoetherated and dietherated active species were obtained.  相似文献   

2.
Electroinitiated cationic copolymerization of indene and α-methylstyrene in dichloromethane has been investigated by constant potential electrolysis. The effects of copolymerization potential and the temperature on the copolymer composition was also studied. Constant potential electrolysis was found to be a suitable method to study the potential effects on copolymer compositions and the reactivity ratios of the monomers. The reactivity ratios were calculated according to integrated Lewis–Mayo equation.  相似文献   

3.
Alternating copolymers of α-methylstyrene (α-MeSt) and maleic anhydride (MAn) were prepared by free-radical-initiated polymerization in bulk, benzene, or butanone as solvents. By applying the generalized model described by Shirota and co-workers, the reactivity ratios k1c/k12 and k2c/k21 were calculated from the change of copolymerization rate with monomer feed at constant total monomer concentration. From the equation Rp = Rp(f) + Rp(CT) were calculated Rp(f) and Rp(CT), and it was found that in benzene the reaction proceeds predominantly by the addition of CT-complex monomers, while in butanone, cross propagation of free monomers predominates. Termination occurs predominantly by homotermination of α-MeSt macro free radicals, kt22, although the cross termination kt21 is also operative.  相似文献   

4.
Molecular weight distributions determined by gel permeation chromatography demonstrate that α-methylstyrene copolymerizes with both β-pinene and styrene, forming both bi- and terpolymers. The composition of precipitated polymer versus crude polymer, as determined by nuclear magnetic resonance, suggests that β-pinene and styrene also copolymerize. Extraction of the latter bipolymer of β-pinene and styrene with acetone gives only a small amount of insoluble β-pinene homopolymer, confirming that β-pinene and styrene copolymerize in m-xylene. GPC analysis shows that each copolymer contains some homopolymer. A comparison of M n with molecular weight calculated from NMR analysis, assuming chain transfer to solvent, indicates that chain transfer is the predominant method of forming dead polymer. The carbonium ions of the growing chain tend to transfer to solvent with increasing ease in the order β-pinene, styrene, and α-methylstyrene.  相似文献   

5.
The emulsion copolymerization behavior of α-methylstyrene with methacrylonitrile is described. The effects of polymerization temperature, potassium persulfate initiator concentration, sodium lauryl sulfate emulsifier concentration on copolymer yield, molecular weight, and rate of copolymerization are described. The copolymer was found to have an azeotropic composition at 43 mole-% AMS. Reactivity ratios were determined to be 0.06 and 0.28 for AMS and MAN, respectively.  相似文献   

6.
7.
Alternating copolymers of β-methylstyrene and maleic anhydride were prepared by free-radical-initiated polymerization in bulk and in toluene as a solvent. The reactivity ratios k1c/k12 and k2c/k21 were calculated from the change of copolymerization rate with a monomer feed at a constant total monomer concentration according to the generalized model of Shirota and coworkers. From the equation Rp = Rp(f) + Rp(CT) were calculated Rp(f) and Rp(CT), and it was found that in toluene the copolymerization proceeds predominantly by the addition of CT-complex monomers. Termination occurs predominantly by homotermination of β-methyl-styrene macro free radicals, kt22, but the cross termination kt21 is also operative.  相似文献   

8.
9.
10.
Radical chain-transfer constants can be deduced from corresponding measurements of rates and degrees of polymerization in copolymerization experiments. It is particularly useful to carry out such copolymerization in emulsion systems where the normal termination reactions are relatively less important and chain-transfer processes are significant in determining the number-average degree of polymerization. The method is illustrated for copolymerization of styrene and α-methylstyrene at three temperatures. Rate constants for transfer of styryl and α-methylstyryl radicals to either monomer were measured. All the rate constants are consistent with the relative stabilities of the product radicals which could be formed by the various transfer reactions. The procedure described here can be extended for measurements of rate constants for reactions of other potential transfer agents.  相似文献   

11.
12.
13.
Styryl- and α-methylstyryldiphenylbismuth (I and II, respectively), and styryl and α-methylstyryltriphenyllead and the two corresponding tin-containing monomers (III, IV, V and VI, respectively) were synthesized. Compounds III through VI were obtained pure, but I and II contain substantial quantities of Ph3Bi and di- and tri-vinyl derivatives. Homopolymers of I, III and V, as well as copolymers with methyl acrylate were synthesized radically. Monomers III, V, and VI yielded narrow MWD polymers with anionic initiators such as the potassium salt of the α-methylstyrene dimer carbanion in THF at −80°C, while I gave a broad, bimodal MWD. Monomers II and IV did not polymerize under these conditions due to side reactions with the initiator. Glass transition temperatures, thermal stabilities and radiopacities of a number of the polymers were determined.  相似文献   

14.
The alternating copolymerization of styrene and methyl α-chloroacrylate (MCA) with diethylaluminum chloride (Et2AlCl) in benzene at 0°C has been investigated. The copolymer has an equimolar composition irrespective of the feed monomer composition, the copolymer yield and the amount of Et2AlCl used. The copolymerization proceeds first very rapidly and then rather slowly after attaining a certain yield which varies proportionally to the amount of Et2AlCl used. A maximum copolymer yield is observed at about 60% MCA feed composition. The 1H-NMR analyses of dyad, triad, and pentad of the alternating deuterated α-d-St-MCA copolymer indicate that the configuration of this copolymer can be explained by a single parameter, coisotacticity σ(σ = 0.69). A favorable mechanism of the alternating propagation as well as of the stereoregularity control is discussed.  相似文献   

15.
The polymerization of α-Methyl Styrene Oxide initiated by trityl hexachloroantimonate is reported upon. Data is presented on side reactions, percent yield and molecular weight of polymer produced in the polymerization.  相似文献   

16.
Photodegradation behavior of atactic and isotactic polymers of tert-butyl vinyl ketone (t-BVK) and its copolymers with styrene and α-methylstyrene was studied in dioxane as a solvent at room temperature. The quantum yield of main-chain scission of atactic poly(t-BVK) was found to be larger than that of isotactic poly(t-BVK) and atactic poly(methyl vinyl ketone). From the Stern-Volmer plots on the quenching study of atactic poly(t-BVK) with naphthalene and 2,5-dimethyl-2,4-hexadiene, it was found that 60–70% of its photochemical reaction underwent main-chain scission from the triplet state. It was also found that the increase in t-BVK contents of both copolymers accelerated the photodegradation, and the copolymer with styrene was more photodegradable than that with α-methylstyrene. These results seemed to suggest that the main-chain scission of these vinyl ketone polymers and copolymers proceeded through a Norrish type II photoelimination mechanism.  相似文献   

17.
Electron spin resonance (ESR) spectra were observed at ?160°C and at room temperature for γ-irradiated poly-α-methylstyrene. The spectrum observed at room temperature has been attributed to the radical species while that at ?160°C results from the same radical and superposition of the spectrum due to the radical ?H2-C(CH3)(C6H5)-. The radicals which are stable at room temperature could be used to graft vinyl acetate.  相似文献   

18.
The kinetics of anionic polymerization of α-methylstyrene with Na+ as counterion have been studied in mixed solvents of tetrahydrofuran (THF) and toluene in various compositions at ?25 to 5°C. The ion-pair rate constant k(±) increases by about a factor of 50 at ?10°C, whereas the activation energy decreases from 5.1 to ?2.2 kcal/mole, when THF in the mixed solvent increases from 30 to 100 vol-%. The plot of log k(±) against (D ? 1)/(2D + 1) is a curve, where D is the dielectric constant of the medium. This deviation from linearity is explained in terms of propagation by two types of ion-pairs.  相似文献   

19.
α-Methyleniedane (MI), a cyclic analog of α-methylstyrene which does not undergo radical homopolymerization under standard conditions, was synthesized and subjected to radical, cationic, and anionic polymerizations. MI undergoes radical polymerization with α,α′-azobis(isobutyronitrile) in contrast to α-methylstyrene, owing to its reduced steric hindrance, though the polymerization is slow even in bulk. Cationic and anionic polymerization of MI with BF3OEt2 and n-butyllithium, respectively, proceed rapidly. The thermal degradation behavior of the polymer depends on the polymerization conditions. The anionic and radical polymers are heteortactic-rich. Reactivity ratios in bulk radical copolymerization on MI (M2) with methacrylate (MMA, M1) were determined at 60°C (r1 = 0.129 and r2 = 1.07). In order to clarify the copolymerization mechanism, radical copolymerization of MI with MMA was investigated in bulk at temperatures ranging from 50 to 80°C. The Mayo–Lewis equation has been found to be inadequate to describe the result due to depolymerization of MI sequences above 70°C.  相似文献   

20.
The structure of the tetrameric dianion formed by α-methylstyrene in tetrahydrofuran by reaction with sodium has been examined. Mass spectral, NMR, infrared, and kinetic data all indicate that the structure is rather than the structure which had previously been assumed for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号