首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present work, first, the water-stable metal–organic framework (MOF) nanocrystals, UiO-66-(F)4, were synthesized under green reaction condition and then some PES/PA thin-film nanocomposite (TFN) membranes were prepared using this synthesized nanocrystals (as modifier) and polyethersulfone (as the substrate). The obtained MOF and membranes were characterized by various characterization techniques such as FE-SEM, AFM, PXRD, contact angle measurements and FT-IR spectroscopy. Finally, the forward osmosis performance of the resultant membranes was evaluated by using different concentrations of NaCl as a draw solution and deionized water as a feed solution. Among all used membranes, the membrane with 0.1 wt% loading of UiO-66-(F)4 (TFN-2) was found to be an efficient composite membrane in the FO performance with high Jw and low Js/Jw.  相似文献   

2.
The physico-chemical properties of poly(ethylene) glycol solutions in water have been studied with use of pressure perturbation calorimetry. The three PEGs of average molecular mass (Mr) 6000, 10000, 20000 were used. The concentration of polymers was changed in the range 0–30% mass per volume (w/v%). On the basic of VP-DSC measurements with use of PPC technique the dependencies of thermal expansion coefficient (α) and excess specific heat capacity (Cp,exc) on temperature were determinated for PEG–water solutions.  相似文献   

3.
Nine unfractionated poly(vinyl fluoride) samples were characterized for molecular weight and polydispersity by means of sedimentation velocity, osmometry, and viscosity measurements. Molecular weights were in the range of 143,000–654,000 and M w/M n = 2.5–5.6. The Mark-Houwink (M-H) relation was established as [η] = 6.52 × 10?5 M0.80. The M-H exponent is at the Flory-Fox upper limit (0.80), as is characteristic of extended, polar polymers, in good solvents. The unperturbed chain dimensions, characteristic ratio and steric factor were derived by the methods of Stockmayer and Fixman and Kurata and Stockmayer. The steric factor is 1.7, which agrees with data reported for other poly(vinyl halides).  相似文献   

4.
A pyrolysis–gas chromatographic technique for measuring the amount of hydrogen chloride released during the high temperature pyrolysis of poly(vinyl chloride) resins, plastisols, copolymers and compounds containing inert fillers has been developed. The technique, which is also applicable to the analysis of chlorinated polyethylene and chlorinated poly(vinyl chloride), is based on the use of a standard precursor of HCl, poly(vinyl chloride) homopolymer. The analysis has been successfully used to measure the degree of in situ absorption of HCl during pyrolysis by certain basic fillers [K2CO3, CaCO3, CaO, MgO, Al(OH)3, Na2CO3, Al2O3 and LiOH] dispersed in a poly(vinyl chloride)–o-dioctyl phthalate matrix. Combustion of a number of combustion residues (chloride determination) revealed that the amount of HCl absorbed by the basic filler was independent of the method of degradation (pyrolysis or combustion). Flammability measurements of those matrices having the same composition indicate that in situ absorption of HCl during combustion has little effect on the overall flammability of these materials.  相似文献   

5.
While conventional approaches have been studied for removal of ruthenium(III) ions (Ru(III)), this work focuses on the applicability of ion‐imprinted poly(methyl methacrylate‐vinyl pyrrolidone)/poly(vinylidene fluoride) blending membranes (Ru(III)–ion‐imprinted membrane[IIM]) for selective removal of Ru(III) from acidic water solutions. In order to measure the effectiveness of these imprinted membranes, after fabrication, binding experiments were done with aqueous Ru(III) solutions. The results showed that Ru(III)‐IIMs were fabricated successfully at various blending ratios, and their chemical components, microstructures, hydrophilicity, and water fluxes were measured. In pH range 0.5 to 5.0, binding capacity (Qe) of Ru(III) onto Ru(III)‐IIM increases remarkably with pH and then reaches to a maximum value (53.52 mg/g) at pH 1.5. After that, Qe gradually decreases. Compared with a nonimprinted membrane, Ru(III)‐IIM demonstrates higher selectivity for Ru(III) at pH 1.5 in the presence of Ni(II) and Cu(II) ions, and its selectivity coefficients for Ru(III)/Ni(II) and Ru(III)/Cu(II) are 3.70 and 3.32, respectively. Also, Ru(III)‐IIM shows a good chemical stability and reusability. C─N and C═O bonds within poly(vinyl pyrrolidone) segments of poly(methyl methacrylate‐vinyl pyrrolidone) (P(MMA‐VP)) participate the uptake of Ru(III). Ru(III)‐IIM exhibited excellent hydrophilicity and Ru(III) selective adsorption ability and reusability and has potential to be used for Ru(III) removal from acidic water solutions.  相似文献   

6.
Cationically charged poly(allylamine) (PAA) membranes having various water contents [0.49 < H < 0.63 (g H2O/g wet membrane)] were prepared. Sorption and permeation of simple salts (sodium chloride and sodium tetraphenylborate) were investigated, taking into account the state of the water in these membranes. The weight ratios of freezable water and free water to total water (Wfz/Wt, and Wf/Wt) in the membranes were estimated by means of DSC and pulsed 1H-NMR measurements, respectively. Partition coefficients K for total water were converted into those in freezable and free water, Kfz and Kf, using Wfz/Wt and Wf/Wt. The permeability of both salts in the membranes could be interpreted satisfactorily by an equation derived from the Teorell-Meyer-Sievers theory using values of Kf. The free water is mainly involved in the permeation of simple salts through PAA membranes while bound water hardly takes part.  相似文献   

7.
Here, polyvinylidene fluoride (PVDF) membranes were fabricated via non-solvent induced phase separation (NIPS) using dopamine (DA) and polyethyleneimine (PEI) as the hydrophilic additives, which has a loose surface and somewhat improved hydrophilicity. Then nanofiltration (NF)-like thin-film composite forward osmosis (TFC FO) membrane with a loose polyamide (PA) active layer on the blend membrane was synthesized via the interfacial polymerization. The as-prepared NF-like TFC FO membrane exhibited a high water flux (Jw) of 29.98 L m−2 h−1 and a much low specific salt flux (Js/Jw) of 0.018 g/L, when 0.6 M NaCl was used as draw solution (DS). It had a superior rejection of malachite green (99.6% ± 0.1%) and a low rejection of NaCl (27.4% ± 4.2%), when filtrated malachite green/NaCl mixture solution in active layer-facing draw solution (AL-FS) mode. The results provide new insights on the design and preparation of FO membranes of selective separation for dyes from salty water.  相似文献   

8.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This study describes a novel precision synthesis strategy for graft copolymers using Friedel–Crafts‐type termination reaction between a cationically prepared poly(styrene derivative) and the naphthyl side groups from a poly(vinyl ether) main chain. The pendant alkoxynaphthyl groups on the poly(vinyl ether) efficiently terminated the living cationic polymerization of p‐acetoxystyrene (AcOSt) with SnCl4 in the presence of ethyl acetate as an added base. This research provides the first example of a well‐defined graft copolymer prepared using this method. The resulting polymer contained 40 poly‐(AcOSt) branches, as calculated from the Mw determined via gel permeation chromatography–MALS analysis, which was in good agreement with the estimated number of branches obtained from 1H NMR analysis. The acetoxy groups in the grafted poly(AcOSt) chains were easily converted into phenolic hydroxy groups under basic conditions. The as‐obtained graft copolymer with poly(p‐hydroxystyrene) side chains exhibited a pH‐sensitive phase separation in water. The synthetic method for preparing the graft copolymers was also effective in the living cationic polymerizations of other styrene derivatives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4675–4683  相似文献   

10.
A sample of high molecular weight poly(vinyl chloride) (PVC) was fractionated by classical precipitation fractionation and gel-permeation chromatography (GPC) on a preparative scale. The fractions thus obtained were characterized by light scattering, viscometry, and by the GPC method. The measured weight-average molecular weights M?w, intrinsic viscosity [η], and polydispersity index M?w/M?n values were used for the determination of the Mark-Houwink equation, [η] = KMa, for PVC in cyclohexanone (CHX) at 25°C valid for molecular weights from 100,000 to 625,000.  相似文献   

11.
Measurements of the diffusive permeances of water, NaCl, and ethanol through several, unoptimized membranes are presented. Such data can facilitate analysis and development of water recovery from highly impaired sources using hybrid processes based on forward (direct) osmosis (FO) with aqueous ethanol solutions as the “osmotic” agent. The membranes we have studied include anion and cation exchange materials and cross-linked poly(vinylalcohol) (PVA) gels, the latter being a membrane chemistry commercially used for ethanol dehydration via pervaporation. The measured transport properties are reported and suitability of these materials for an FO-based water recovery process is discussed in the context of process simulations.  相似文献   

12.
The use of the polyiminophosphazene base t-Bu-P4 (1) for the anionic polymerization of ethylene oxide is described. Polymerization initiated by a monoalkoxide of the protonated base leads to well-defined poly(ethylene oxide)s with low polydispersity (M w/M n ≈ 1.1). Furthermore, graft copolymers of poly[ethylene-co-(vinyl alcohol)] (PEVA) with poly(ethylene oxide) and a star macromolecule were synthesized from multifunctional polyalkoxides in high yields.  相似文献   

13.
Asymmetric membranes, based on Poly[ethylene-co-(vinyl acetate)] (EVA) containing 70 wt.% of vinyl acetate, were prepared by a treatment of unilateral hydrolysis using solutions of sodium hydroxide dissolved in a mixture of water and methanol. The depth of hydrolyzed layers and the concentration of hydroxyl groups in the membranes were controlled by the reaction time. The oxygen permeability, PO2, of these membranes decrease with the reaction time while the water permeability, PH2O, reaches maximum at 30 min. The ideal separation factors of PH2O to PO2 of the EVA membranes treated for 1h to 4h are in the range of 3840 to 13500, and are greater than that of the EVA membranes. The plasticization effect of the membrane depends on the depth and concentration of hydroxyl groups and the concentration gradient of water in the membranes.  相似文献   

14.
Viscosity and normal stress behavior were measured for poly(methyl methacrylate) samples of various average molecular weights in diethyl phthalate solution at 30 and 60°C. All samples conformed approximately to the most probable distriution (M?w/M?n = 2). Concentrations ranged from 0.113 to 0.38 g/ml, and M?w from 53,800 to 1,620,000. Despite considerable evidence in the literature of unusual linear viscoelastic behavior for this polymer, its nonlinear properties appear to be rather conventional. The viscosity–shear rate master curve was similar to that found earlier for concentrated solutions of polystyrene and poly(vinyl acetate) of comparable molecular-weight distribution. The viscosity time constant τo parallels τR, the characteristic time of the Rouse model, although the residual dependence of τoR on concentration and molecular weight appears to be slightly different from that for polystyrene and poly(vinyl acetate). Similar conclusions apply to the recoverable compliance Je,o estimated from the normal stress behavior of each solution, and its relationship to the Rouse model compliance JR.  相似文献   

15.
Phase transition of water confined in nanospaces with charged inner-surfaces was investigated by vibrational spectroscopy. Aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles give a series of spherical nanospaces with controlled inner-radius (Rw) with nanometer-scale precision. Successive spectroscopic measurements of the confined water with decreasing temperature revealed that the water freezes to metastable cubic ice (Ic) coexisting with super-cooled water or unstable amorphous ice at the Rw ranging from 1.0 to 2.0 nm. When Rw exceeded 2.0 nm, stable hexagonal ice (Ih) dominated. The drastic change of the dominant ice structure with the increase of 1 nm in Rw shows that the thickness of water layers affected by the inner surface can be estimated to be ~1 nm, where three or four layers of water hydrated to the surface. It is worth noting that the clear phase transition behavior of the confined water vanishes at Rw = 1.2 nm and that the gradual formation of Ic and coexistence of super-cooled water or glassy state of water are detected. The range of the effective interaction between interfacial water and the charged inner surfaces and the mechanism of the extremely slow phase transition were also discussed.  相似文献   

16.
Dynamic mechanical properties determined with a torsion pendulum were used to ascertain the glass transition temperature Tg of poly-ε-caprolactone. By measurements on compatible blends of poly-ε-caprolactone and poly(vinyl chloride), the Tg of amorphous poly-ε-caprolactone was shown to be 202°K at about 1 cps. This is 16°K lower than the Tg of annealed, crystalline polymer. The blend transition data were well fitted by both the Fox and the Gordon-Taylor expressions. The Fox expression was also used to describe the decrease from 233°K of the secondary low-temperature relaxation due to poly(vinyl chloride) by assuming the low temperature relaxation of poly-ε-caprolactone, 138°K, was responsible for the decrease in the blends. The 138°K relaxation due to poly-ε-caprolactone was decreased when more than 50% poly(vinyl chloride) was present.  相似文献   

17.
ZHANG  Xiaohuan  WANG  Beidi  YANG  Dong  ZHANG  Xiaohong  YUAN  Li  TANG  Qianqian  HU  Jianhua 《中国化学》2009,27(11):2273-2278
A new amphiphilic graft copolymer containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(vinyl acetate) side chains was synthesized via sequential atom transfer radical polymerization (ATRP) followed by selective hydrolysis of poly(methoxymethyl acrylate) backbone. Grafting‐from strategy was employed to synthesize PMOMA‐g‐PVAc graft copolymer (Mw/Mn=1.64) via ATRP. The final PAA‐g‐PVAc amphiphilic graft copolymer was obtained by selective acidic hydrolysis of PMOMA backbone in acidic environment without affecting the side chains. The critical micelle concentrations (cmc) in aqueous media were determined by a fluorescence probe technique. The micelle morphologies were found to be spheres.  相似文献   

18.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

19.
Living cationic polymerizations of two silicon-containing vinyl ethers, 2-(t-butyldimethyl-silyloxyl)ethyl vinyl ether (tBuSiVE) and 2-(trimethylsilyloxyl)ethyl vinyl ether (MeSiVE), have been achieved with use of the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?15 or ?40°C, despite the existence of the acid-sensitive silyloxyl pendants. The living nature of the polymerizations was demonstrated by linear increases in the number-average molecular weights (M?n) of the polymers in direct proportion to monomer conversion and by their further rise upon addition of a second monomer feed to a completely polymerized reaction mixture. The polymers obtained in these experiments all exhibited very narrow molecular weight distributions (MWD) with M?w/M?n around or below 1.1. Desilylation of the polymers under mild conditions (with H+ for MeSiVE and F? for tBuSiVE) gave poly(2-hydroxyethyl vinyl ether), a water-soluble polyalcohol with a narrow MWD. The living processes also permitted clean syntheses of amphiphilic AB block copolymers and water-soluble methacrylate-type macromonomers, all of which bear narrowly distributed segments of the polyalcohol derived from the silicon-containing vinyl ethers.  相似文献   

20.
Water sorption properties, proton NMR spectra, and diffusion of water and protons in poly(vinylidene fluoride)-graft-polystyrene sulfonic acid (PVDF-g-PSSA) polymer electrolyte membranes were studied. Sorption curves for the membranes with different degrees of grafting in protonated and Na+ form were measured by equilibrating the membranes over saturated salt solutions. The membrane water content was found to be sensitive to changes in relative humidity (RH). The water/sulfonic acid ratio λ for the protonated samples was around 2 at 20% RH and increased to λ ∼ 30 at 100%. Proton NMR, pulsed field gradient proton NMR (PFG-NMR), and impedance measurements were made on membranes with different λ. In the proton NMR spectra only one peak was found, originating from the water in the membrane. The chemical shift of the peak was found to be dependent on the counterion and the water content. The water self-diffusion coefficients DH2O, measured by PFG-NMR, increased with degree of grafting and water content of the membranes. The proton conductivity and the calculated proton mobility decreased more steeply than the DH2O with decreasing water content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2893–2900, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号