首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Attempts have been made unsuccessfully to homopolymerize a number of allyl esters of substituted fatty acids by radical initiation in emulsion systems. Copolymerizations of these allyl esters with styrene, methyl methacrylate, and vinyl chloride have been investigated. Of these comonomers, styrene and methyl methacrylate do not copolymerize well with the allyl esters, whereas vinyl chloride does. Reactivity ratios for the radical copolymerization of allyl 11-iodoundecanoate, M1, and vinyl chloride, M2, determined at 60°C. in benzene, are r1 = 0.42 and r2 = 1.64. A copolymer of allyl 10, 11-dibromoundecanoate and vinyl chloride was fractionated and found to be fairly homogeneous.  相似文献   

2.
The radiation-induced grafting of styrene vapor to low-density polyethylene film of 0.063 mm thickness was studied at 23°C at a dose rate of 1.98 × 104 rad/hr. The concentration C of monomer in the film was measured as a function of pre-irradiation exposure time to monomer vapor. The concentration-dependent diffusion coefficient of styrene in polyethylene was calculated to be 4.9 × 10?9 exp {2.0C/C0} cm2/sec, where C0 is the saturation concentration of styrene in the film, and a linear boundary diffusion coefficient for styrene vapor into polyethylene film was found to be 2.0 × 10?7 cm/sec. The rate of grafting was determined as a function of the concentration of styrene absorbed in the film. The maximum graft yield was obtained with an initial styrene concentration in the film of 4 wt-%. Under conditions of low initial monomer concentration, the grafting rate increases with irradiation time. The results are compared with previously published data on grafting of polyethylene from methanol–styrene solutions. They are explained in terms of the viscosity of the amorphous region as a function of styrene content and the resistance to the diffusion of monomer at the film–vapor interface.  相似文献   

3.
Pre‐irradiation grafting of styrene/divinylbenzene (DVB) onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films from isopropanol (iPrOH) solution was investigated with respect to the effect of irradiation dose, film thickness, cross‐linker concentration, and reaction temperature. A mathematical model was applied to the kinetic curves to extract information on the polymerization rate, the radical‐recombination rate, and the grafting through time. It turned out that the two closely correlated reaction rates for polymerization and radical recombination can be varied over a wide range by changing the irradiation dose, the cross‐linker concentration, and the reaction temperature. On the other hand, the time until the grafting front has progressed to the center of the film is mainly affected by the film thickness and the reaction temperature. The formation of homopolymer in the grafting solution increases steeply with temperature and cross‐linker concentration.  相似文献   

4.
The addition of the π–π stacking agent octafluorotoluene (OFT) resulted in up to a 50% reduction in monomer conversion after 24 h for atom transfer radical polymerization (ATRP) reactions of styrene, when performed at 85 °C with 1 eq of OFT compared with styrene in the initial reaction mixture. Monitoring the progress showed that the ATRP of styrene in the presence of either OFT or hexafluorobenzene (HFB) maintained a linear relationship between monomer conversion and number average molecular weights, while showing a first order rate dependence on monomer. The effects of π–π stacking on the KATRP could be overcome by using adjusting the redox activity of the metal‐ligand complex while maintaining reaction temperatures of 85 °C. Further experiments showed that nitroxide‐mediated polymerizations of St were affected to an identical extent by the presence of the π–π stacking agent HFB. The ATRP of pentafluorostyrene (PFSt) in the presence of π–π stackers benzene or toluene showed an increase in monomer conversion compared with reactions in their absence, consistent with Mn π–π stacking increasing the stability of the active radical. Interactions between the π–π stacking agents OFT and HFB and the aromatic groups in the ATRP of St or PFSt were verified by 1H NMR analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the Mn was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 °C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (<1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5232–5245, 2005  相似文献   

6.
Sparteine was found to be an efficient ligand because when complexed with copper(I) halide it generated a homogeneous catalyst for the atom transfer radical polymerization of styrene or methyl methacrylate, which was initiated by (1-bromoethyl)benzene in the former case and by p-toluenesulfonyl chloride in the latter. The plots of ln([M]0/[M]) versus time and molecular weight versus monomer conversion exhibited linear dependencies, which indicated that the concentration of the living centers throughout polymerization was constant. The polydispersities of polystyrene and poly(methyl methacrylate) in both the bulk and solution polymerizations were quite low. An induction time was observed during the bulk polymerization of styrene; however, it was absent during the solution polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4191–4197, 1999  相似文献   

7.
The radiation graft polymerization of styrene to polyethylene was studied under diffusion-controlled conditions of radiation intensity I, monomer concentration M1, and polymer sample thickness L. The results of the present study together with previous work under diffusion-free conditions verify our theoretical model for the diffusion-controlled reaction. The grafting rate is inverse first order in L for diffusion-controlled reaction and independent of L for diffusion-free reaction. The order of dependence of grafting rate on radiation intensity for diffusion-controlled reaction is one-half that for diffusion-free reaction. Diffusion control leads to a decrease in the order of dependence of grafting rate on monomer concentration. The decrease is greater than theoretically predicted; possible reasons for this effect are described.  相似文献   

8.
Nickel‐mediated atom transfer radical polymerization (ATRP) and iron‐mediated reverse ATRP were applied to the living radical graft polymerization of methyl methacrylate onto solid high‐density polyethylene (HDPE) films modified with 2,2,2‐tribromoethanol and benzophenone, respectively. The number‐average molecular weight (Mn) of the free poly(methyl methacrylate) (PMMA) produced simultaneously during grafting grew with the monomer conversion. The weight‐average molecular weight/number‐average molecular weight ratio (Mw/Mn) was small (<1.4), indicating a controlled polymerization. The grafting ratio showed a linear relation with Mn of the free PMMA for both reaction systems. With the same characteristics assumed for both free and graft PMMA, the grafting was controlled, and the increase in grafting ratio was ascribed to the growing chain length of the graft PMMA. In fact, Mn and Mw/Mn of the grafted PMMA chains cleaved from the polyethylene substrate were only slightly larger than those of the free PMMA chains, and this was confirmed in the system of nickel‐mediated ATRP. An appropriate period of UV preirradiation controlled the amount of initiation groups introduced to the HDPE film modified with benzophenone. The grafting ratio increased linearly with the preirradiation time. The graft polymerizations for both reaction systems proceeded in a controlled fashion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3350–3359, 2002  相似文献   

9.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   

10.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

11.
A well‐defined amphiphilic graft copolymer, poly(6‐methyl‐1,2‐heptadien‐4‐ol)‐g‐poly(2‐(dimethylamino)ethyl methacrylate) (PMHDO‐g‐PDMAEMA), has been synthesized by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. PMHDO backbone containing double bonds and pendant hydroxyls was first prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol (MHDO) followed by treating the pendant hydroxyls with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. SET‐LRP of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) was performed in THF/H2O using PMHDO‐Cl as macroinitiator and CuCl/Me6TREN as catalytic system to afford the well‐defined PMHDO‐g‐PDMAEMA graft copolymer with a narrow molecular weight distribution (Mw/Mn = 1.28). The grafting density was as high as 92%. The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the micellar morphology was preliminarily explored by transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
The graft polymerization of styrene onto high-density polyethylene films was carried out by γ-irradiation in the vapor phase. Two methods were used for grafting in these experiments: a preirradiation method and a simultaneous irradiation method. The effects of these grafting methods on the reaction mechanism of grafting and on the properties of the grafted samples were investigated. The amounts of styrene homopolymer in the grafted samples is under 2% in the case of the preirradiation method and above 10% in the case of the simultaneous irradiation method. The activation energies were calculated to be 18 kcal/mole for grafting in the preirradiation method and 15 kcal/mole for weight increase of polyethylene films in styrene vapor. The difference in the dimensional expansion between in the direction of stretching and the direction prependicular to it is smaller with preirradiation grafting than with grafting by the simultaneous irradiation method. Differential thermal analysis of the grafted films shows an endothermic peak due thermal decomposition which decreases gradually from 450°C to 415°C with increase in degree of grafting from 30 to 60%. The lowering of this peak temperature appears at a lower degree of grafting when the preirradiation method is used. On the basis of these results, it is concluded that the reaction rate of radiation-induced grafting in the vapor phase depends closely upon the processes of adsorption, dissolution, and diffusion of styrene monomer in polyethylene films; in the case of simultaneous irradiation method, the reaction proceeds comparatively uniformly in the amorphous region, while in the case of the preirradiation method, the reaction proceeds mainly at the boundary of the crystalline and amorphous regions.  相似文献   

13.
The analysis of the endgroups of the oligomers produced in the styrene (A)–CCl4(S) system (system I), the methyl methacrylate(B)–CCl4 system (system II), and the styrene–methyl methacrylate–CCl4 system (system III) was carried out in order to clarify the mechanism of the initiation, transfer, and termination. In system I, the number of Cl atoms per oligomer molecule NCl increases with the molar ratio of [S]/[A] when the molar ratio of [S]/[A] is below unity and is about four when the molar ratio of [S]/[A] is above unity, and the number of initiator fragments per oligomer molecule NI decreases with the increase in the molar ratio of [S]/[A]. In system II, NCl is about 0.45 over a considerably wide range of the molar ratio of [S]/[B]. In system III, NCl increases and NI decreases with the increase in the molar ratios of [S]/([A] + [B]) and [A]/[B]. From the data of NCl and NI, the fraction ICC14 of the initiation by the tri-chloromethyl radical in the overall initiation reactions and the fraction TCC14 of the chain transfer reaction of the growing radical of styrene in all the reactions which produce the cooligomer in the system III were calculated. ICCl3 and TCC14 both increase with the molar ratios [S]/([A] + [B]) and [A]/[B].  相似文献   

14.
Polystyrene macromonomers with different molecular weight were prepared by radical polymerization of styrene(St) in benzene using β-methacryloxylethyl 2-N,N-diethyldithiocarbamylacetate (MAEDCA) as a monomer-iniferter.Characterization of the macromonomer by ~1H-NMR showed that the end groups were α-methacrylyoxylethyloxycarbonyl-methyl and ω-(N,N-diethyldithiocarbamyl). The macromonomer was difficult to homopolymerize, but it was easilycopolymerized with methyl methacrylate (MMA) initiated by AIBN to form graft copolymers (PMMA-g-PSt) with PStbranches randomly distributed along the PMMA backbone. Copolymerization reaction and the structure of the graftcopolymers were strongly affected by M_n and concentration of the macromonomer. The composition and M_n of the purified graft copolymer were determined by ~1H-NMR and GPC analysis.  相似文献   

15.
The radiation-induced graft polymerization of styrene to poly(vinyl chloride) (PVC) was investigated. Relations between the rate of grafting and the dose rate when the polymer is irradiated in liquid monomer or in monomer vapor, and between the rate of grafting and monomer concentration absorbed in the polymer have been investigated. The rate of grafting in monomer vapor was found to be far larger than that in liquid monomer. A high rate of grafting in monomer vapor was thought to result from a lower concentration of monomer in PVC during irradiation. An experiment carried out on PVC containing the monomer at various concentrations showed that the rate is largest at a monomer concentration of about 3.5 mole/l. and is smaller for higher and lower concentrations. On the assumption that the theory of homogeneous homopolymerization can be applied to this grafting reaction, the value of kp2/kt has been obtained, where kp and kt are propagation constant and termination constant, respectively. The value of kt greatly increases when the monomer concentration exceeds 3.5 mole/l. This increase of kt can be accounted for if it is assumed that the monomer absorbed in the polymer works as a plasticizer and increases the molecular motion of the polymer. A measurement of the elastic modulus of PVC containing the monomer at various concentrations showed that this is, in fact, the case.  相似文献   

16.
The graft copolymerization of undecylenic acid onto acrylonitrile–butadiene–styrene terpolymer (ABS) was initiated with benzoyl peroxide (BPO) in a 1,2‐dichloroethane solution. IR spectra confirmed that undecylenic acid was successfully grafted onto the ABS backbone. The influence of the concentrations of undecylenic acid, BPO, and ABS on the graft copolymerization was studied. A reaction mechanism was proposed: the grafting most likely took place through the addition of poly(undecylenic acid) radicals to the double bond of the butadiene region of ABS. A monomer cage effect on the graft reaction was observed to depend on the 1.5 power of the monomer concentration from the experimental results of the initial rate of graft copolymerization. The initial rate of graft copolymerization was written as Rp = 1.77 × 10−3[P][I2][M]2.5/([P]+2.75[M]2.5)2. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 486–494, 2001  相似文献   

17.
The bulk polymerization of methyl methacrylate (MMA) initiated with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) was studied. This polymerization showed some “living” characteristics; that is, both the yield and the molecular weight of the resulting polymers increased with reaction time, and the resultant polymer can be extended by adding MMA. The molecular weight distribution of PMMA obtained at high conversion is fairly narrow (Mw/Mn = 1.24≈1.34). It was confirmed that DCDPS can serve as a thermal iniferter for MMA polymerization by a “living” radical mechanism. Furthermore, the PMMA obtained can act as a macroinitiator for radical polymerization of styrene (St) to give a block copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4610–4615, 1999  相似文献   

18.
A new chain transfer agent, ethyl 2-[1-(1-n-butoxyethylperoxy) ethyl] propenoate (EBEPEP) was used in the free radical polymerization of methyl methacrylate (MMA), styrene (St), and butyl acrylate (BA) to produce end-functional polymers by a radical addition–substitution–fragmentation mechanism. The chain transfer constants (Ctr) for EBEPEP in the three monomers polymerization at 60°C were determined from measurements of the degrees of polymerization. The Ctr were determined to be 0.086, 0.91, and 0.63 in MMA, St, and BA, respectively. EBEPEP behaves nearly as an “azeotropic” transfer agent for styrene at 60°C. The activation energy, Eatr, for the chain transfer reaction of EBEPEP with PMMA radicals was determined to be 29.5 kJ/mol. Thermal stability of peroxyketal EBEPEP in the polymerization medium was estimated from the DSC measurements of the activation energy, Eath = 133.5 kJ/mol, and the rate constants, kth, of the thermolysis to various temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
α‐(2‐Methyl‐2‐phenylpropyl)acrylate (RS‐2) was examined as a C? C bond‐cleavage type addition–fragmentation chain transfer (AFCT) agent in the benzene solution polymerizations of styrene (St), ethyl methacrylate (EMA), and cyclohexyl acrylate (CHA) with the objective of achieving efficient macromonomer synthesis by radical polymerization. The AFCT efficiency was evaluated in terms of the decrease in the number‐average molecular weight (Mn) upon the addition of the AFCT agent and the number of unsaturated end groups introduced per chain (f). The AFCT efficiency was rationalized by the consideration of the relative importance of AFCT as an end‐forming event and the competition between ‐fragmentation and crosspropagation as adduct radical reaction pathways. In St and EMA polymerizations at 60 °C, RS‐2 resulted in higher f values and lower Mn values than methyl α‐(2‐methyl‐2‐carbomethoxypropyl)acrylate (MMA‐2), and this suggested the facilitation of ‐fragmentation due to the expulsion of the more stable cumyl radical from the RS‐2 adduct radical. Higher f values were observed for MMA‐2 than for RS‐2 in CHA polymerization because of unsaturated end group formation by ‐fragmentation of midchain radicals. However, RS‐2 resulted in lower Mn values for poly(CHA) than MMA‐2 because of a smaller contribution of crosspropagation. Retardation in the presence of the AFCT agents was affected by the balance between b‐fragmentation and crosspropagation and by the addition rate of the propagating radical to the AFCT agent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6021–6030, 2004  相似文献   

20.
Cellulose-MMA graft copolymers have been produced using aqueous-based, Ce(IV)-initiated and periodate-initiated systems and also photochemical initiation. The reaction variables studied include the effect on grafting of varying the MMA monomer concentration, the initiator type and concentration, and also the reaction time. Of the three initiator types examined, the Ce (IV)-initiated and the photochemically-initiated systems are comparable in their effects on graft copolymer formation. Concurrent homopolymer formation was in the region of 50% by weight. Periodate-initiation leads to less efficient grafting of MMA onto cellulose, although homopolymer formation is also lower (typically <20% by weight). The characterization of the copolymeric products through their properties as solids and, as their carbanilated derivatives, through their solution properties has been undertaken. Values of the activation onergy of decomposition (EA) of the cellulose-MMA graft copolymers decrease with increasing MMA content, ranging between 227 and 155kJ mol?1. There is also a dependence on initiator type and grafting reaction conditions used (EA (cellulose wood pulp) = 239 kJ mol?1; EA (PMMA) = 115 kJ mol?1). Quantitative zeta-potential (ζ) determinations for cellulose-MMA graft copolymer samples produce negative surface charge density (σ) values. At a comparable MMA grafting level of 70–80%, values are of the order: photochemical (?730 esu/cm2) > periodate (?470 esu/cm2) > Ce (IV)-initiation (?351 esu/cm2). Characterization of carbanilate solutions (by rheological examination) and of dry, carbanilate films (by study of surface wetting behavior) highlighted differences in the physical conformation of copolymers prepared by the different initiation routes. The highly degradative effect on cellulose of a periodate initiator, in comparison with the Ce (IV)-initiation system, is reflected in significantly reduced molar mass values (typically, Mn 65,000 as opposed to 130,000 for Ce (IV)-initiated graft copolymer carbanilates).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号