首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mobilities of polymer chain segments in mixtures of rubber and carbon black were investigated by nuclear magnetic resonance. Spin–spin relaxation time (T2) measurements on cis-polybutadiene and ethylene–propylene–diene rubber (EPDM) bound rubbers detected at least two relaxing regions: an immobile region and a relatively free region. The molecular motions in the relatively free region are still constrained compared to those of the pure gum.  相似文献   

2.
Polymers (polyethylene, polyurethane), silica and modified silicas (modified with: N-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-merkaptopropyltrimethoxysilane, triethoxyoctylsilane) were examined by inverse gas chromatography at four different temperatures: 363, 383, 393 and 403 K. The modifiers of silica were applied at five different concentrations. Small amounts of the following test solutes were injected to achieve the infinite dilution conditions: pentane, hexane, heptane, octane, nonane, dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane.

The retention times for these test solutes were determined and Flory–Huggins parameters were calculated. Values of these physico-chemical parameters characterizing the examined materials were arranged in a matrix form: in the rows the supports and modifiers were enumerated at different temperatures whereas the columns contained the test solutes. The input matrix was subject to principal component analysis after standardization. Three principal components explain more than 93% of the total variance in the data. Four test solutes (hexane, heptane, chloroform and carbon tetrachloride) carry very similar information. Therefore, it is justified to eliminate any three of them from the series of test solutes. Modifiers, supports and various temperatures were classified and different groups were observed according to the dominant interactions. Type of modifier, its content, and temperature can change and shift the properties from the dominant clusters to the neighboring clusters. Unambiguous separation was observed in cases of silica modified with 5 and 10 parts of triethoxyoctylsilane at all examined temperatures.  相似文献   


3.
This mini-review focuses on the utilization of pulsed magnetic field gradients to measure diffusional motion in systems of macroscopically oriented lipid bilayers. The NMR diffusion technique is proposed to have appreciable potential for future biophysical investigations in the field of membrane biology. Topics such as transport of molecules both across and in the plane of the membrane can be successfully studied, and the formation of lipid domains and their intrinsic dynamics can also be scrutinized. First, a short introduction to the NMR technique is given together with a brief discussion on methods of obtaining a good bilayer orientation. Then, a number of recent results on biophysical/biological membrane systems of great interest is presented, in which some unique conclusions on so-called 'raft membranes' are reached. It is shown for systems with large two-phase areas of liquid disordered and liquid ordered phases that lipid lateral diffusion is faster in the former phase and has a smaller apparent activation energy. Further, on the time-scale of the experiments (50-250 ms), exchange between the two phases is fast in the phospholipid-cholesterol-water ternary system, whereas it is slow in the sphingomyelin-dioleoylphosphatidylcholine-cholesterol-water quaternary system.  相似文献   

4.
Carbon black is a common polymer additive that is used for reinforcement and for its ability to enhance physical properties, such as conductivity. This article pertains to an X‐ray scattering (SAXS) study of a conductive grade of carbon black and carbon black–polymer composites. The scattering pattern for such blacks displays a surface‐fractal‐like power‐law decay over many decades in scattering vector q. It is often assumed that small‐angle scattering from carbon black aggregates can be described in terms of surface‐fractal models, related to particles with fractally rough surfaces. Such self‐similar surface roughness is usually easy to identify by microscopy; however, electron microscopy from these blacks fails to support this assumption. It is proposed here that this apparent surface‐fractal scattering actually represents a more complicated morphology, including overlapping structural features and a power‐law scaling of polydispersity. One use of conductive black–polyethylene composites is in circuit protection devices where resistive heating leads to a reversible association of carbon black aggregates that controls switching between a conductive and a nonconductive state. Scattering can be used as an in situ tool to observe the morphological signature of this reversible structural change. Scattering patterns support a model for this switching based on local enhancement of concentration and the formation of linear agglomerates associated with the matrix polymer's semicrystalline morphology. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1105–1119, 1999  相似文献   

5.
Results of the dielectric studies carried out on the binary mixture of n-butyric and caprylic acids with 1,4-dioxane over the entire composition range and at temperatures 303 K, 308 K, 313 K and 318 K, and FTIR, UV–vis and 13C NMR spectral studies are presented in this paper. The excess permittivity and excess free energy were fitted with the Redlich–Kister polynomial. The variation of Kirkwood correlation factors, excess permittivity and excess free energy of mixing with the concentration and temperature has been investigated in view of understanding the ordering of dipoles of solute and solvent molecules. The FTIR, UV–vis and 13C NMR spectral analysis reveals the formation of complex between solute and solvent molecules. The parallel alignment of electric dipoles of the complex predicted by dielectric studies is well supported by UV–vis spectral analysis. The structure of the complex molecule present in the clusters has been deduced.  相似文献   

6.
The calorimetric glass‐transition temperature (Tg) and transition width were measured over the full composition range for solvent–solvent mixtures of o‐terphenyl with tricresyl phosphate and with dibutyl phthalate and for polymer–solvent mixtures of polystyrene with three dialkyl phthalates. Tg shifted smoothly to higher temperatures with the addition of the component with the higher Tg for both sets of solvent–solvent mixtures. The superposition of the differential scanning calorimetry traces showed almost no composition dependence for the width of the transition region. In contrast, the composition dependence of Tg in polymer–solvent mixtures was different at high and low polymer concentrations, and two distinct Tg's were observed at intermediate compositions. These results were interpreted in terms of the local length scale and associated local composition variations affecting Tg. The possible implications of these results for the dynamics of miscible polymer blends were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1155–1163, 2004  相似文献   

7.
Hyaluronic acid (HA) is an anionic biopolymer that is present in many tissues and can be involved in cancerous neoformations. HA can form complexes with proteins (particularly, serum albumin) in the body. However, HA structures and processes involving HA have not been extensively studied by NMR because the molecule's rigid structure makes these studies problematic. In the current work, self‐diffusion of HA and bovine serum albumin (BSA), and water in solutions was measured by 1H pulsed field gradient NMR (PFG NMR) with a focus on the HA‐BSA‐D2O systems at various concentrations of BSA and HA. It was shown that in the presence of even a small amount of HA, the self‐diffusion coefficient (SDC) of BSA decreases. To explain this fact, three hypotheses were proposed and analyzed. The first one was based on the effect of slowing down of water mobility in the presence of HA. The second hypothesis suggested an effect of mechanical collisions of BSA with HA molecules. The third hypothesized that BSA and HA molecules form a complex where BSA molecules reduced in mobility. It was shown that the third mechanism is the most likely. The state of the BSA molecules in the BSA‐HA‐D2O system corresponds to a ‘fast exchange’ condition from the NMR point of view: BSA molecules reside in the ‘free’ and ‘bound’ (with HA) states for much shorter time than the diffusion time of the PFG NMR experiment, 7 ms. The fractions of ‘bound’ BSA molecules in the BSA‐HA complex were estimated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The structural‐dynamic changes and polymer‐solvent interactions during temperature‐induced phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of concentrations (0.1‐30 wt.‐%) were studied by 1H NMR methods. In the whole concentration range the phase transition is manifested by line broadening (linewidth 350‐500 Hz) of a major part of PVME units, evidently due to the formation of globular‐like structures. Above the LCST transition, the fraction of phase‐separated PVME segments is equal to 0.8±0.1, independent of polymer concentration. While at low concentrations the transition is virtually discontinuous, at high concentrations the transition region is ∼ 3 K broad. Measurements of nonselective and selective 1H spin‐lattice relaxation times T1 of solvent (HDO) molecules evidenced that at elevated temperatures, where most PVME forms globular structures, a part of solvent molecules is bound to PVME forming a complex; the lifetime of the bound water (HDO) molecules is ≤2 s.  相似文献   

9.
Isobutylene isoprene rubber (IIR)‐clay nanocomposites have been prepared successfully by melt intercalation with maleic anhydride‐grafted IIR (Ma‐g‐IIR) and organophilic clay. In IIR‐clay nanocomposites, the silicate layers of the clay were exfoliated and dispersed into the monolayer. The nanocomposites exhibited greater gas barrier properties compared with those of Ma‐g‐IIR. When 15 phr clay was added, gas barrier properties were 2.5 times greater than those of Ma‐g‐IIR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1182–1188, 2006  相似文献   

10.
The presence of small amounts of CO2 in poly(vinyl chloride) (PVC) results in increased main-chain molecular motions of the polymer as measured by the carbon rotating-frame relaxation rate. This effect increases with increasing gas concentration. Since molecular motions of the polymer and the diffusion coefficient of the gas are related, the latter must be concentration dependent. Main-chain motions of PVC also increase upon exposure to CO2 followed by degassing. This result is interpreted in terms of the effect of the penetrant gas on the interchain packing in amorphous PVC. These results cannot be reconciled with the dual-sorption-mobility model, which claims that gas molecules preferentially occupy preexisting sorption sites in a conditioned polymer with no perturbation of the polymer matrix.  相似文献   

11.
Mixtures in various proportions of natural rubber (NR) and each of two tackifier resins, a poly-β-pinene and a modified pentaerythritol rosin ester, were used as the adhesive layer in joining a flexible polyester strip to a plane glass substrate. Measurements of the force required to peel the strip from the glass at a 90° angle were made over a range of pulling rates at several temperatures. Application of time-temperature superposition enabled a master curve of (reduced) peel force versus (log) pulling rate at a standard temperature (296 K) to be obtained for each adhesive composition. The master curves showed, in increasing order of pulling rate, some or all of four different modes of peeling: (i) peeling with viscous adhesive response, (ii) peeling with rubbery response, (iii) oscillatory or slip-stick peeling, and (iv) peeling with glassy adhesive response. In general, transitions between the different peeling modes were quite abrupt. Increase in concentration of tackifier resin caused displacement of the master curve toward lower pulling rates [an effect interpreted in terms of an increasing adhesive glass temperature (Tg)], and a superimposed displacement of the transition between peeling modes (i) and (ii) toward higher pulling rates-an effect attributed to reduction in adhesive average molecular weight. The influence of the tackifier resin in modifying the viscoelastic characteristics of the adhesive was further demonstrated in a comparison of the peel force master curves with corresponding master curves of dynamic storage modulus.  相似文献   

12.
Dynamic structure and polymer-solvent interactions in solutions and gels of isotactic (i) poly(methyl methacrylate) (PMMA) in butyl acetate (BAC) were characterized by measurements of nonselective and selective 1H NMR spin-lattice relaxation times of the solvent. In thermoreversible gels, the existence of i-PMMA-BAC complex, where the life-time of the bound solvent is − 100 ms or shorter, was confirmed. Although the correlation time of the solvent bound in i-PMMA-BAC complex is 5-10 times longer than for the free solvent, there is still a relative motional freedom for complexed solvent molecules. The same behaviour observed recently for thermoreversible gels of syndiotactic PMMA indicates the same character of polymer-solvent complexes in gels of both stereoregular forms of PMMA.  相似文献   

13.
The possibilities of NMR spectroscopy in studies of interactions in polymer systems are demonstrated on the example of two types of macromolecular complexes: (i) By measuring 1H NMR high resolution line intensities, the formation of ordered associated structures of syndiotactic (s) poly(methyl methacrylate)(PMMA) in mixed solvents was quantitatively characterized. The obtained results permit us to assume that the mechanism by which the solvent affects self-association of s-PMMA involves specific interactions of the solvent molecules with PMMA units. Solid state high resolution 13C NMR spectra of associated s-PMMA gels were also measured and compared with the spectra of a solid s-PMMA sample. (ii) By using 13C solid state NMR spectroscopy, the differences in the structure of the amorphous and crystalline phases in pure poly(ethylene oxide) and its complexes with p-dichlorobenzene or p-nitrophenol were characterized. Prounounced differences also in the dynamic structure of the crystalline phase in these systems are indicated by the relaxation times T1(C), T(C) and T(H).  相似文献   

14.
15.
Fluorene-9-13C, fluorenone-9-13C, acenaphthenone-11-13C, acenaphthenone-12-13C, 1-methylcyclopentanol-1-13C and 1-methylcyclopentene-1-13C were synthesized to obtain J(CC) values between the natural carbons and the labeled carbons. Each of these compounds possessed at least one asymmetric dual-path coupling, i.e., coupling between the labeled carbon and another carbon via simultaneous two- and three-bonded coupling paths. Model 13C-labeled compounds were synthesized where necessary to give expected values of the constituent mono-path couplings. Values of these dual-path couplings (2+3)J suggested that the observed value is the (at least approximate) algebraic sum of the two constituent J values.  相似文献   

16.
Complete 1H NMR bandshape analysis has been used to study the rotational barrier around the carbon–carbon double bond in two types of polarized ethylenes; on the one hand for planar ketene mercaptals (A), for which the hindered rotation over the 90 degrees twisted transition state is measured and, on the other hand, for sterically hindered ketene aminals (B and C) which are twisted in the ground state, and have measurable barriers over a planar, sterically crowded transition state. For compounds A activation entropies of the order of ?45 to ?76 J mol?1 K?1 (?11 to ?8 cal mol?1 K?1), and for compounds B and C +28 to +42 J mol?1 K?1 (+7 to +10 cal mol?1 K?1) were obtained. This important difference was interpreted in terms of opposite charge development during the course of the rotation in the two cases, with concomitant reversed changes in the orientations of the solvent. The effects of solvent polarity and the presence of acid are shown to be reversed for the two types of compounds. A more polar solvent, and, in particular, addition of small amounts of acid decrease the barrier in system A but increase the barrier in systems B and C. A large negative entropy of activation was found for the acid-catalyzed process, ΔS = ?107 J mol?1 K?1 (?25.5 cal mol?1 K?1). This low value is briefly discussed in relation to the mechanism of the acid-catalyzed rotation.  相似文献   

17.
Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed.  相似文献   

18.
The polymerization of methyl methacrylate (MMA) initiated by an enolizable ketone (R1? CO? CH2? CO? R2)-carbon black system was investigated. Although enolizable ketone itself could not do so, the polymerization of MMA was initiated by enolizable ketone in the presence of carbon black. In addition, a chloranil-enolizable ketone system was able to initiate the polymerization of MMA. It was found that the enol form of the ketone and quinonic oxygen groups on the carbon black surface played an important role in the initiation system; namely, it was considered that the polymerization was begun by the ketone radical (R1? CO? CH? CO? R2) formed by a one-electron transfer reaction from enolate ion to quinonic oxygen groups. The effect of solvent on the process was also studied. The rate of the polymerization increased, depending on the solvent used, in the following order: benzene < 1,4-dioxane < dimethyl sulfoxide < N,N-dimethylformamide < N-methyl-2-pyrrolidone. Furthermore, it became apparent that during the polymerization poly(methyl methacrylate) was grafted onto the carbon black surface (grafting ratio was ca. 40% when benzene was used as solvent) and the carbon black obtained gave a stable colloidal dispersion in organic solvent.  相似文献   

19.
The analysis of the effect of the solvents on the proton chemical shifts in1H NMR spectra of 2-vinyloxypyridine indicates that the C—H...N interaction of weak intramolecular hydrogen bond type hinders the formation of intermolecular hydrogen C—H...X and C-H... bonds. The protonating solvents reduce the intramolecular C—H...N interaction due to association with the N atom of the pyridine cycle.Translated fromIzvestiya Akademii Nauk. Seriya Khimieheskaya, No. S, pp. 1202–1204, May, 1996.  相似文献   

20.
The resistivity and dielectric constant for carbon black (5–12 vol-%) in a nonconducting matrix have been measured over the range 20–90°C and dc to 2–105 Hz. Styrene–butadiene rubber dissolved in tetracosane (22 parts SBR to about 70 parts wax) constituted the matrix. Wide variations in resistivity and dielectric constant with temperature and/or frequency were observed. A theory is presented to explain the experimental observations. It correctly predicts the qualitative features of the experimental results but its predictions are not quantitatively accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号