首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

2.
The mechanism of dediazoniation of arenediazonium tetrafluoroborates in 2,2,2-trifluoroethanol (TFE) is strongly dependent on the concentration of added pyridine. The added base complexes with the diazonium ion and diverts it to a homolytic pathway. Complex formation is indicated by the disappearance of the \documentclass{article}\pagestyle{empty}\begin{document}$\raise1pt\hbox{---} \mathop {\rm N}\limits^ \oplus \equiv {\rm N}\raise1pt\hbox{---}$\end{document} stretching vibration and appearance of a new band at about 1640–1690 cm?1 ascribed to the \documentclass{article}\pagestyle{empty}\begin{document}$\raise1pt\hbox{---} {\rm N}\raise1pt\hbox{=\kern-3.45pt=} {\rm N}\raise1pt\hbox{---} \mathop {\rm N}\limits^ \oplus {\rm C}_5 {\rm H}_5$\end{document} system. UV. and NMR. results support this conclusion. Chemically induced dynamic nuclear polarization (CIDNP) experiments clearly implicate a radical-pair as an important intermediate in the decomposition of these complexes.  相似文献   

3.
A useful synthesis of a series of new aromatic sulfone ether diamines, H2NC6H4O\documentclass{article}\pagestyle{empty}\begin{document}$\hbox{---}\hskip-5pt[\ {\rm C}_{\rm 2} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{--} {\rm ORO}\hbox{---}\hskip-5pt ]_n {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{---} {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm NH}_{\rm 2} $\end{document}, where n = 0, 1, 2…, which increases the tractability of polyimides, polyamide-imides, and polyamides, was developed. These diamines were prepared by condensing various proportions of sodium p-aminophenate, sodium bisphenates, and dichlorodiphenyl sulfone. The synthetic procedures are now refined to the point where simply coagulating these diamines into water yields high purity polymer-grade sulfone ether diamines. The latter have good tractability; and in some cases, it is possible to extrude and injection-mold these high temperature polymers.  相似文献   

4.
Charge transfer (CT) interaction is described in semiconducting dispersions of TCNQ complex salt \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Et}_3 {\rm NH}^+ ({\rm TCNQ})_2^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} with and without added TCNQ°, in poly(vinyl acetal) matrices in which the electron-donor moiety is varied. The extent of CT interaction was determined in films and in solution (DMF, acetonitrile, or methylene chloride) through the absorbances at 398 nm (\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document} and TCNQ°) and 857 nm \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}$\end{document}. Resistivity of the conductive films was related to the stoichiometry of TCNQ species in the films and found to have a minimum at \documentclass{article}\pagestyle{empty}\begin{document}$[{\rm TCNQ}^\circ]/[{\rm TCNQ}{\ }^{\cdot^{\hskip-3.7pt\hbox{--}}}]\simeq 1$\end{document}. Lower resistivities were attained with films having a uniform, densely packed dispersion of microcrystallites which were obtained at a relatively slow solvent removal rate. With this particular complex salt, strong electron-donor polymers are found to be better matrices for semiconductivity.  相似文献   

5.
The photooxidation of acrylonitrile, methacylonitrile, and allylcyanide in the presence of NO was studied in parts per million concentration using the long-path Fourier transform IR spectroscopic method. The stoichiometry of the OH radical initiated oxidation of methacrylonitrile was established as \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm C}\left( {{\rm CH}_{\rm 3} } \right){\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + CH}_{\rm 3} {\rm COCN + 2NO}_{{\rm 2}} + \left( {{\rm OH}} \right) $\end{document}. The yield of HCHO for acrylonitrile and allylcyanide was found to be ca. 100 and 80%, and the stoichiometric reactions were assessed to proceed, \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + HCOCN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCH}_{\rm 2} {\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{0.8} {\rm HCHO + HCOCH}{\rm 2} {\rm CN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document}, respectively. These results revealed that the reaction mechanism for these unsaturated organic cyanides are analogous to that of olefins.  相似文献   

6.
(o-Methylphenyl)acetylene polymerized with high yields in the presence of W and Mo catalysts. W catalysts were more active than the corresponding Mo catalysts. The weight-average molecular weight of the polymer formed with W(CO)6–CCl4hv reached 8 × 105, being higher than the maximum value (ca. 2 × 105) for poly(phenylacetylene). The polymer had the structure $\rlap{--} [{\rm CH} \hbox{=\hskip-1pt=} {\rm C}(o - {\rm CH}_3 {\rm C}_6 {\rm H}_4 )\rlap{--} ]_n $. The stereochemical structure of the main chain could be determined by 13C-NMR; the cis content varied in a range of 41–61% depending on the polymerization conditions. The present polymer was thermally more stable than poly(phenylacetylene) according to thermogravimetric analysis. Interestingly, this polymer possessed deeper color than poly(phenylacetylene), and showed a fairly strong absorption in the visible region.  相似文献   

7.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

8.
The reaction SO + SO →l S + SO2(2) was studied in the gas phase by using methyl thiirane as a titrant for sulfur atoms. By monitoring the C3H6 produced in the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm S} + {\rm CH}_3\hbox{---} \overline {{\rm CH\hbox{---}CH}_2\hbox{---} {\rm S}} \to {\rm S}_2 + {\rm C}_3 {\rm H}_6 (7) $\end{document}, we determined that k2 ? 3.5 × 10?15 cm3/s at 298 K.  相似文献   

9.
Linear polyacroleins prepared by anionic polymerization give the structural repeat units of the types \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--}[{\rm CH}\left( {{\rm CHO}} \right)\hbox{--} {\rm CH}_{\rm 2} {\rm \rlap{--} ], \rlap{--} [CH}_{\rm 2} \hbox{--} {\rm CH}\left( {{\rm CHO}} \right)\rlap{--} ], $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}\left( {{\rm CH}\hbox {\rm CH}_2 } \right)\hbox{\rm O\rlap{--} ]} $\end{document} without any cyclization. Analysis of these polymers by several methods reveal the nature and amount of each structural species, and an estimation of their distribution along the polymeric chain.  相似文献   

10.
Polyamides which contain succinamide units, ? NHCO? (CH2)2? CONH? were prepared by the ring-opening polyaddition of bissuccinimides with diamines at 200°C. in bulk. Nylon 24 and nylon 64 were prepared by the reaction of N,N′-ethylenedisuccinimide with ethylenediamine and of N,N′-hexamethylenedisuccinimide with hexamethylenediamine, respectively. It was suggested that the transamidation reaction by aminolysis influenced the detailed structures of the polymers prepared from N,N′-ethylenedisuccinimide and hexamethylenediamine and from N,N′-hexamethylenedisuccinimide and ethylenediamine. The detailed structures of the polymers are discussed on the basis of their melting points and x-ray diagrams. It is concluded that the polymers contain a crystalline portion of \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--}[{\rm NH \hbox{--} (CH}_2 {\rm)}_{\rm 2} {\rm \hbox{--} NHCO \hbox{--}}({\rm CH}_2)_2 {\rm \hbox{--} CONH \hbox{--}}({\rm CH}_2)_6 {\rm \hbox{--} NHCO \hbox{--}}({\rm CH}_2)_2 {\rm \hbox{--} CO\rlap{---}]} $\end{document} sequences.  相似文献   

11.
ESR studies of ultraviolet-irradiated polyethylene (PE) were carried out. Irradiation effects different from those of high-energy radiation are observed. Ultraviolet radiation is absorbed selectively, and especially in carbonyl groups in PE produced by oxidation. Radicals produced were identified as \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CH}_2 \hbox{---}$\end{document}. Some radicals giving a quintet signal stable at room temperature were also observed but remained unidentified. The radical \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} undergoes a mutual conversion with the acyl radical:   相似文献   

12.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

13.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

14.
The unimolecular decompositions of two isomers of [C3H8N]+, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH} = \mathop {\rm N}\limits^ + {\rm H}_2 $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H = CH}_{\rm 2} $\end{document}, are discussed in terms of the potential energy profile over which reaction may be considered to occur. The energy needed to promote slow (metastable) dissociations of either ion is found to be less than that required to cause isomerization to the other structure. This finding is supported by the observation of different decomposition pathways, different metastable peak shapes for C2H4 loss, the results of 2H labelling studies, and energy measurements on the two ions. The corresponding potential energy profile for decomposition of the oxygen analogues, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH =\!= }\mathop {\rm O}\limits^ + {\rm H} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^ + {\rm = CH}_{\rm 2} $\end{document}, is compared and contrasted with that proposed for the [C3H8N]+ isomers. This analysis indicates that for the oxygen analogues, the energy needed to decompose either ion is very similar to that required to cause isomerization to the other structure. Consequently, dissociation of either ion is finely balanced with rearrangement to the other and similar reactions are observed. Detailed mechanisms are proposed for loss of H2O and C2H4 from each ion and it is shown that these mechanisms are consistent with 2H and 13C labelling studies, the kinetic energy release associated with each decomposition channel, the relative competition between H2O and C2H4 loss and energy measurements.  相似文献   

15.
Bifunctional methoxonium ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} -\mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OH}({\rm b}) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} - \mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OCH}_3 ({\rm c}) $\end{document} (c) show as the main reactions those caused by functional group interaction, as has already been found for the analogous hydroxonium ions (g). Although there are similarities in the fragmentation behaviour of the isomeric ions b and g, their fragmentation pathways are different, proving b and g as distinct species. The dominant primary fragmentation for b and c is loss of CH3OH. The hydrogen migrations prior to this reaction have been established by deuterium labelling. The findings on the fragmentation behaviour of the bifunctional methoxonium ions have been extended to the general behaviour of hydroxy and alkoxy substituted alkoxonium ions.  相似文献   

16.
The structures of copolymers of aziridines with cyclic imides were determined by means of infrared spectrometry, paper electrophoresis of the hydrolyzate, and NMR spectrometry. The structure of the repeating unit in the copolymer of ethylenimine with succinimide was \documentclass{article}\pagestyle{empty}\begin{document}$\rlap{--} ({\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CONH}\rlap{--} ) $\end{document}. The endgroups of the copolymer were N-acylethylenimine ring, N-substituted succinimide ring, and primary amide group. The copolymer of ethylenimine with N-ethylsuccinimide had the repeating unit of \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CON}({\rm C}_2 {\rm H}_5 )\rlap{--} ] $\end{document} and the endgroups of N-acylethylenimine and N-substituted succinimide ring. N-Ethylethylenimine did not copolymerize with succinimide, but in the presence of water, the reaction occurred to give an amorphous polymer. This copolymer had the repeating unit \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_2 {\rm CH}_2 {\rm NHCOCH}_2 {\rm CH}_2 {\rm CON}({\rm C}_2 {\rm H}_5 )\rlap{--} ] $\end{document} and the endgroups were N-substituted succinimide ring and amine group but not N-acylethylenimine ring. On the basis of this structural information, the initiation reaction was discussed.  相似文献   

17.
Ion cyclotron resonance spectrometry and deuterium labeling have been used to determine that nondecomposing \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm)}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm = CH}_{\rm 2}$\end{document} ions do not isomerize to \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^{\rm + } {\rm HCH}_{\rm 3}$\end{document}.  相似文献   

18.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

19.
The [C4H8O] ion in the mass spectrum of 1-hepten-3-ol is shown to be \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} {\rm{CH}}_{\rm{2}} {\rm{C(= }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}})\mathop {\rm{C}}\limits^{\rm{.}} {\rm{H}}_{\rm{2}} $\end{document} by collisional activation spectra, appearance energies and comparison of the ratios of the intensities of metastable decompositions. [C4H8O] appears to be formed by rearrangement of ionized 1-hepten-3-ol to \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{.}} {\rm{HC(= }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H)CH}}_{\rm{2}} {\rm{CH}}_{\rm{2}} {\rm{CH}}_{\rm{2}} {\rm{CH}}_{\rm{3}} $\end{document} followed by γ-hydrogen rearrangement-β-cleavage.  相似文献   

20.
Three [C3H3O]+ ion structures have been characterized. The most stable of these is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm CH} - \mathop {\rm C}\limits^ + = {\rm O} $\end{document} its heat of formation ΔHf was measured as 749±5 kJ mol?1. In the μs time frame this ion fragments exclusively by loss of CO, a process which also dominates its collisional activation mass spectrum. The other stable [C3H3O]+ structures, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}\equiv \mathop {\rm C}\limits^ + - {\rm CHOH} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm C} = \mathop {\rm C}\limits^{\rm + } - {\rm OH}, $\end{document}, were generated from some acetylenic and allenic precursor ions; their heats of formation were estimated to be 830 and 880 kJ mol?1 respectively. The former ion was also produced by the gas phase protonation of propynal. These ions show loss of C2H2 and CO in both their metastable ion and collisional activation mass spectra. The broad Gaussian-type metastable peak for the loss of CO was shown to consist of two components corresponding to gragmentations having different activation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号