首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of polymerization of tributyltin methacrylate (TBTM) has been studied in benzene solution in the temperature range 60–75°C in the presence of azobisisobutyronitrile (AIBN). We have obtained the following polymerization rate equation: R p = K p [TBTM]1.5 [AIBN]0.5. It shows that the dependence of the polymerization rate on the concentrations of the monomer TBTM and the initiator AIBN are 1.5 and 0.5 order, respectively. The activation energy of polymerization was found to be 18.1 kcal/mol. The activation energy for the degree of polymerization is approximately -12.3 kcal/mol.  相似文献   

2.
Monodisperse micron-sized polystyrene particles crosslinked using urethane acrylate were produced by dispersion polymerization in ethanol solution and the effect of the crosslinked network structure on the polymerization procedure was studied. The influences of the concentrations of the initiator and urethane acrylate on the particle diameter (D n), the particle number density (N p), and the polymerization rate (R p) were found to obey the approximate relationships D n ∝ [initiator]0.43 [urethane acrylate]0.05, N p ∝ [initiator]−1.30 [urethane acrylate]0.19, and R p ∝ [initiator]0.24 ± 0.02. The power-law dependence of D n and N p on the initiator concentration showed a similar trend to that of linear polystyrene reported in the literature. Especially, it was found that urethane acrylate does not have a serious effect on D n and N p of the particles produced. The dependence of R p on the initiator concentration was observed to be higher than that of linear polystyrene, suggesting that there is still competition between heterogeneous polymerization and solution polymerization because of the crosslinked network structure of the primary particle. Received: 1 April 1999 Accepted in revised form: 29 June 1999  相似文献   

3.
Polymerization of methyl methacrylate with some cobalt (III) complexes was carried out in various solvents and in mixed solvents of acetone and water or alcohols. Sodium hexanitrocobaltate(III) was found to be an effective initiator in mixed solvent of water and acetone. The kinetic study on the polymerization of methyl methacrylate with Na3[Co(NO2)6] in a water-acetone mixed solvent gave the following over-all rate equation: Rp = 8.04 × 104 exp{ ?13,500/RT} [I]1/2[M]2 (mol/1.?sec). The effects of various additives on polymerization rate and the copolymerization curve with styrene suggest that polymerization proceeds via a radical mechanism. The dependence of the polymerization rate on the square of monomer concentration and the spectroscopic data were indicative of the formation of a complex between initiator and monomer.  相似文献   

4.
Kinetic studies on methyl methacrylate polymerization were carried out with watersoluble 2,2′-azobisisobutyramidine (ABA). The rate of polymerization was proportional to the square root of the initiator concentration in the solvents chloroform, methanol, and dimethyl sulfoxide (DMSO), which confirms the bimolecular nature of the termination reaction. The monomer exponent was unity in chloroform but in methanol and DMSO the rate of polymerization passed through a maximum when plotted against the monmer concentration. This behavior in methanol has been attributed to be due to the enhanced rate of production of radical with increasing proportion of methanol. The rate of decomposition of the ABA has been observed to be faster in methanol than in chloroform. The situation becomes more complicated with DMSO, which was found to reduce the value of δ = (2kt)1/2/kp in methyl methacrylate polymerization. The rate of polymerization was observed to be highly dependent on the nature of the solvent, the rate increasing with increased electrophilicity of the solvent. The dependence of Rp on the solvent has been explained in the light of the stabilization of the transition state due to increased solvation of the basic amidine group of the initiator with the increased electrophilicity of the solvent.  相似文献   

5.
The rate of polymerization Rp of methyl methacrylate initiated by Fe(CIO4)3 and thiourea (TU) in tert-butyl alcohol is indepenent of [Fe(III)] and [TU] in the concentration range studied. In contrast to Rp, the degree of polymerization DP changes markedly with the change in the initiator concentration. DP is overwhelmingly lower than is expected in a standard radical polymerization at the same Rp. Further, Rp is proportional to the square of the monomer concentration. Initiation efficiency is less than one. Independent experiments proved that in the azobisisobutyronitrile-initiated polymerization the Rp and DP are negligibly affected by [Fe(CIO4)3] or [TU], though high [TU] brings about high induction periods. The results of Fe(III)-TU-initiated polymerization have been interpreted in terms of the predominant termination of polymer radicals by primary radicals.  相似文献   

6.
The polymerization of vinylpyridine initiated by cupric acetate has been studied. The rate of polymerization was greatly affected by the nature of the solvent. In general polar solvents increased the rate of polymerization. Polymerization was particularly rapid in water, acetone, and methanol. The initial rate of polymerization of 4-vinylpyridine (4-VP) in a methanol–pyridine mixture at 50°C. is Rp = 6.95 × 10?6[Cu11]1/2 [4-VP]2 l./mole-sec. The activation energy of initiation by cupric acetate is 5.4 ± 1.6 kcal./mole. Polymerization of 2-vinylpyridine and 2-methyl-5-vinylpyridine with the same initiator was much slower than that of 4-VP. Dependence of Rp on monomer structure and solvent is discussed. Kinetic and spectroscopic studies led to the conclusion that the polymerization of 4-VP is initiated by one electron transfer from the monomer to cupric acetate in a complex having the structure, (4-VP)2Cu(CH3COO)2.  相似文献   

7.
Abstract

The kinetics of phase-transfer-agent-assisted free-radical polymerization of methyl methacrylate using K2S2O8 as the water-soluble initiator and triethylbenzylammonium chloride (TEBA) as the phase-transfer catalyst (PTC) was investigated in toluene-water biphase media at 60°C. The effect of varying [MMA], [K2S2O8], [TEBA], [H+], the ionic strength of the medium, and the temperature on the rate of polymerization (R p) was studied. R p was found to be proportional to [MMA]2, [K2S2O8]1, and [TEBA]0.5. Based on the kinetic results, a mechanism involving initiation of polymerization by phase-transferred S2O8 2- and termination by Q+ (quaternary ammonium ion) is proposed.  相似文献   

8.
The polymerization of acrylonitrile initiated by an ascorbic acid–peroxodisulfate redox system was studied in an aqueous solution at 35°C in the presence of air. Molecular oxygen was found to have no effect on the polymerization reaction. An increase in ionic strength slightly increased the rate. The overall rate of polymerization, Rp, showed a square dependence on [monomer] and a half-order dependence on [peroxodisulfate]. A first-order dependence on [ascorbic acid] at low concentrations (<3.0 × 10?3 mol L?1) followed by a decrease in Rp at higher concentrations of ascorbic acid (>3.0 × 10?3 mol L?1) was also noted. Rp remained unchanged up to 40°C and showed a decline thereafter. Addition of catalytic amounts of cupric ions decreased the rate whereas ferric ions were found to increase the rate. Added sulfuric acid in the range (6.0?50.0) × 10?5 mol L?1 decreased the Rp.  相似文献   

9.
The kinetics of photoinitiated, inverse emulsion polymerization of acrylamide with 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA) as a photoinitiator was investigated under three different cases. First, in a quartz reactor transparent to full UV light, the polymerization rate (Rp) increased and then decreased with the change of initiator order from 0.27 to a negative value when the DMPA concentration was increased, and it was particularly unusual that monomer orders at different DMPA concentrations were lower than the first. Second, for polymerization without DMPA in a quartz reactor, the dependence of Rp on monomer concentration was similar to that of Rp on initiator concentration in the aforementioned case. Third, when polymerization was carried out in a Pyrex reactor where the far UV light was filtered, a peak rate was also observed, and initiator orders varied from 0.24 to a negative value; however, under this case monomer orders at different initiator concentrations were greater than the first. These results indicated that the effect of absorbance often observed in bulk or solution photopolymerization also existed in this system, and the self‐initiation of monomer had some influence on polymerization, and the role of primary radical termination could not be neglected, as evidenced by kinetic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 846–852, 2004  相似文献   

10.
β-Picolinium-p-chlorophenacylide initiates radical polymerization of methyl acrylate (MA) up to 19.5% conversion without gelation due to autoacceleration. The average rate of polymerization (Rp) increases as [ylide] is raised from 1.02 to 3.06 mmol/L, the order of reaction being 0.5 ± 0.02. However, at higher concentrations (>3.06 mmol/L), Rp decreases. The monomer exponent is 1.40 when benzene is used as diluent. The overall energy of activation is computed to be 28.8 kJ/mol. A polar solvent like dimethyl-sulfoxide and a radical scavenger like hydroquinone retard the reaction. The kinetic data and ESR studies indicate that the polymerization proceeds via a free-radical mechanism. Chain termination by degradative chain (initiator) transfer appears to be significant.  相似文献   

11.
The aqueous polymerization of MMA was studied kinetically at 40° C using low concentrations of Py-SO2 complex as initiator. For [Py-SO2] < 2 × 10?2 mol/L, Rp ∞ [PY-SO2]0.5 [M]1.5, and for [Py-SO2] > 2 × 10?2 mol/L, Rp ∞ [Py-SO2]0,0[M]1.08. Polymerization is considered to proceed by a radical mechanism. The radical generation or the initiation step is believed to proceed through equilibrium complexation between the Py-SO2 complex and monomer molecules. For [Py-SO2] < 2 × 10?2 mol/L, the polymerization is characterized by bimolecular termination. Above this [Py-SO2], chain termination by a degradative initiator transfer process assumes prominence.  相似文献   

12.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

13.
A method is proposed for analysing the problems associated with non-ideal polymerizations reflected mainly in the variability of Rp/[I]0·5[M] where Rp is the rate of polymerization and [I] and [M] are the initiator and monomer concentrations, respectively. Primary radical termination and degradative chain transfer are treated jointly and the entirely different mathematical natures of the two processes are described. The method could dispense with the need to use the uninhibited rate of polymerization which does not lend itself to reliable measurements for many systems. It is found to be efficient in detecting the active species in a polymerization system that leads to non-ideality due to degradative chain transfer.This method is applied to vinyl chloride polymerization data from the literature, the values of constants obtained therefrom are found to agree well with the existing values.  相似文献   

14.
Photopolymerization of MMA was studied kinetically at 35° using TEA-BZ2O2 redox system as initiator. The initiator exponent is 0.34 but the monomer exponent depends on the solvent. Solvents (acetonitrile, pyridine and bromobenzene) giving negative or fractional monomer exponent show a rate enhancing effect through actively influencing the initiation step; benzene and chloroform give first order dependence of rate on [monomer] and behave as normal (inert) diluents. Initiation of polymerization takes place through radicals generated by photodecomposition of TEA-BZ2O2 complex formed in situ, the radical generation step being solvent or monomer dependent. Kinetic non-idealities are interpreted in terms of significant initiator dependent termination via degradative chain transfer.  相似文献   

15.
Photopolymerization of MMA in visible light was studied at 40°C using acridone as the photoinitiator. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between monomer and acridone. Kinetic data indicated a lower order dependence of Rp on the initiator concentration (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.0 to 1.5, depending on the nature of the solvent used. The nonidealities in this case were also analyzed.  相似文献   

16.
The kinetics of aqueous polymerization of the symmetrical nonconjugated divinyl monomer N,N′-methylenebis(acrylamide) (MBA), was studied at 35°C and at constant ionic strength under nitrogen atmosphere involving potassium peroxydiphosphate (PDP) as oxidant with three different activators thiolactic acid (TLA), thiomalic acid (TMA), and thioglycollic acid (TGA). The rate of polymerization, RP, and rate of disappearance of peroxydiphosphate, –RPDP have been followed while polymerization was initiated separately by the PDP–TLA/PDP–TMA/PDP–TGA redox systems. RP for the above three systems showed first-order dependences on both [monomer] and [activator] and zero-order dependence on [PDP]. First-order dependence on [PDP] and zero-order dependences on [monomer] and [activators] were observed with respect to –RPDP in the above three systems. A reaction mechanism which involves complex formation between PDP and thiocarboxylic acid, propagation through intramolecular–intermolecular reactions, degradative chain transfer reaction of the growing radical with PDP, and linear termination by the interaction of the chain radical with primary radical was proposed. The kinetic parameters for the three polymerization systems were calculated and compared. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 11–20, 1998  相似文献   

17.
Chain length distributions have been calculated for polymers prepared by pulsed laser polymerization (PLP) under the condition that not only chain termination but also chain propagation is subject to chain length dependence. The interplay between these two features is analyzed with the chain length dependence of the rate coefficient of termination kt introduced in the form of a power law and that of propagation kp modeled by a Langmuir‐type decrease from an initial value for zero chain length to a constant value for infinite chain lengths. The rather complex situation is governed by two important factors: the first is the extent of the decay of radical concentration [R] during one period under pseudostationary conditions, while the second is that termination events are governed by [R]2 while the propagation goes directly with [R]. As a consequence there is no general recommendation possible as to which experimental value of kp is best taken as a substitute for the correct average of kp characterizing a specific experiment. The second point, however, is apparently responsible for the pleasant effect that the methods used so far for the determination of kt and its chain length dependence (i.e., plotting some average of kt versus the mean chain‐length of terminating radicals on a double‐logarithmic scale) are only subtly wrong with regard to a realistic chain length dependence. This is especially so for the quantity kt* (the average rate coefficient of termination derived from the rate of polymerization in a PLP system) and its chain length dependence.  相似文献   

18.
Kinetics of polymerization of styrene-in-water microemulsions   总被引:1,自引:0,他引:1  
The kinetics of polymerization of styrene-in-water microemulsions was investigated using dilatometry. From plots of percentage conversion versus time, the rate of polymerization, R p, was determined. From log-log plots of R p versus styrene and initiator [2,2′-azobis(isobutyronitrile), AIBN] concentrations the following relationship was established: R p∝ [styrene]1.2 [AIBN]0.46. These exponents are similar to those predicted by the theory of emulsion polymerization. The results also showed a rapid conversion in the initial period (interval 1) followed by a slower rate at longer times (interval 2). It was suggested that in interval 1, the main process in nucleation of the microemulsion droplets, whereas in interval 2 propagation is the more dominant factor. The rapid polymerization of microemulsions is consistent with their structure, whereby very small droplets with flexible interfaces are produced. Received: 2 March 1999 Accepted in revised form: 10 May 1999  相似文献   

19.
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were ≥2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.  相似文献   

20.
Photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using Rhodamine 6G—Benzoyl peroxide combination as photoinitiator. The photopolymerization proceeds by a free radical mechanism and the radical generation process occurs by an initial complexation reaction between the initiator components. Kinetic data indicated a lower-order dependence of Rp on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the bimolecular mode of chain termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号