首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-density polyethylene filaments prepared by a solid-state deformation in an Instron capillary rheometer show unusually high crystal orientation, chain extension, axial modulus, and ultimate tensile strength. The Young's modulus and ultimate tensile strength have been determined from stress–strain curves. Gripping of this high modulus polyethylene has been a problem heretofore, but the measurement of ultimate tensile strength has now been made feasible by a special gripping procedure. Tensile moduli show an increase with sample preparation temperature and pressure. Values as high as 6.7 × 1011 dyne/cm2 are obtained from samples extruded at 134°C and 2400 atm and tested at a strain rate of 3.3 × 10?4 sec?1. The effect of strain rate and frequency on modulus has also been evaluated by a combination of stress–strain data and dynamic tension plus sonic measurements over nine decades of time.  相似文献   

2.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

3.
The maximum degree of molecular orientation and deformation obtained by ultradrawing of high-density polyethylene in air is limited by formation of internal voids (both longitudinal separation of fibrils and perpendicular cracking), and thus values of Young's moduli which are achievable by ultradrawing techniques are also limited to values much below the theoretical limit for fully extended chains. Temperature has a significant effect on the critical draw ratios at which intensive void formation begins, and also on the draw ratio at which failure occurs during the ultradrawing. The temperature effect is observed only for high-density polyethylene having a wide molecular-weight distribution, and which can be drawn at higher temperatures (30–40°C below its melting point), e.g., Dow Chemical polyethylene LP51.1. As a result of ultradrawing at higher temperatures, transparent, ultrahigh modulus samples having draw ratios of order of 40 have been obtained. The higher drawing temperatures significantly reduce fibril separation, and perpendicular cracking is shifted toward higher draw ratios. Hence, with LP51.1 the highest Young's moduli (65–70 GPa) have been exhibited by the samples which were ultradrawn at 100–105°C.  相似文献   

4.
A three-dimensional polarized infrared technique was used to obtain information about molecular orientation in both uniaxially and biaxially drawn nylon 6 films. The 835 and 930 cm?1 bands were used to describe the orientation of the A (extended chain) conformation while absorptions at 1175 cm?1, and 1120 cm?1 and 1075 cm?1 were used to give some information about orientation of the B (twisted chain) conformation. On the basis of the 835 and 930 cm?1 bands, it was shown that the hydrogen-bonded sheets made up of chains in the A conformation are parallel to the film surface in the biaxially drawn film. Uniaxially drawn films obtained by drawing both at 100 and 150°C showed a high degree of chain alignment in the draw direction for the A conformation at draw ratios greater than 2.5. Some planar orientation was also observed in these uniaxially drawn films for both the A and B conformations at high draw ratios.  相似文献   

5.
Films of uniaxially oriented poly(ethylene terephthalate) (PET), M v = 81,000, have been drawn by solid-state coextrusion in the range 40–100°C surrounded by polyethylene. This is well below the PET melting temperature and in some cases below its glass transition temperature. Properties of the extrudates, such as degree of crystallinity, mechanical and thermal properties, were investigated as a function of coextrusion temperature and draw ratio (EDR ≤ 4.4). The results show that the percent crystallinity depends strongly on draw ratio, whereas its sensitivity to extrusion temperature is limited only to the highest draw ratio (4.4). On the other hand, Young's modulus was sensitive to both extrusion temperature and draw ratio, exhibiting a maximum at EDR = 4.4 and Text = 65°C. Above this temperature, moduli decrease apparently because of increased chain mobility, resulting in dissipation of chain orientation. Furthermore, changes in yield and tensile strength followed the changes in mechanical properties, suggesting that they are dominated by the same factors. The cold-crystallization temperature TCC also revealed information about the morphological changes occurring during the extrusion drawing. For samples of EDR = 4.4, TCC increased with extrusion temperature, suggesting again dissipation of orientation by thermal motions. On the other hand, TCC decreases with EDR, and a ΔTCC as high as 73°C was found. Conventional drawing of amorphous PET has been widely reported. To our knowledge this is the first time oriented PET has been prepared using the advantages of solid-state coextrusion.  相似文献   

6.
The Tennessee Eastman copolyester of poly(ethylene terephthalate) with 60 mol % p-oxybenzoate units was spun with various capillaries using a constant shear rate at the wall. Variables examined were the length-to-diameter ratio L/D of the capillary, the spin draw ratio Vf/V0, and the spinning temperature. Fibers spun at 260°C showed improved homogeneity of orientation through the cross section, better crystallite orientation, and higher initial moduli as L/D was increased. The spin draw ratio required to optimize these fiber properties decreases as L/D is increased. For example, when L/D = 49.44, the initial modulus has nearly reached its plateau value at a spin draw ratio of 10. However, in contrast to the results of Sugiyama, Lewis, White, and Fellers, we find that some spin draw is always required to optimize fiber properties. Fibers spun with a spin draw ratio of approximately unity showed very poor crystallite orientation and initial moduli. It is suggested that loss of orientation under these conditions may be due to the different velocity profiles in the spinneret and in the solidifed fiber. Fibers were also spun at five temperatures using a capillary having L/D = 49.44. Shear in the capillary is more effective in introducing orientation when the spinning temperature is 260°C or above. At spinning temperatures of 240 and 250°C, the initial modulus increases more slowly with spin draw ratio, and appears to have a lower plateau value. Acierno, La Mantia, Polizzotti, Ciferri, and Valenti spun the same polymer under conditions in which essentially all the orientation was introduced by spin draw. They used a very low extrusion velocity at the spinneret, a small L/D, and spin draw ratios up to 3000. They reported that the initial modulus increased with decreasing spinning temperature, in contrast to our results. Thus the optimum spinning conditions may depend upon whether most of the orientation is introduced by shear in the capillary, or by a high spin draw ratio.  相似文献   

7.
The drawing behavior of linear polyethylene homopolymers with weight-average molecular weights (M?w) from 101,450 to ca. 3,500,000 has been studied over the temperature range 75°C to the melting point. In all cases 1-cm gauge length samples were drawn in an Instron tensile testing machine at a constant cross-head speed of 10 cm/min. With the exception of the lowest molecular weight polymer, it was found that increasing the draw temperature led to substantial increases in the maximum draw ratio which could be achieved, and that this increased monotonically with increasing draw temperature. Measurements of the Young's modulus of the drawn materials showed, however, that the unique relationship between modulus and draw ratio previously established for drawing at 75°C was not maintained to the highest draw temperatures. The highest draw temperature at which this relation held was found to be strongly molecular weight dependent, increasing from ca. 80 to ca. 125°C when M?w increased from 101,450 to 800,000. In all cases conditions could be found for drawing samples to draw ratios of 20 or more with correspondingly large values of the Young's modulus.  相似文献   

8.
We have employed an ultrasonic method to measure from ?40 to 60°C the five independent elastic moduli C11, C13, C33, C44, and C66 of polyoxymethylene with draw ratio λ from 1 to 26 prepared by continuous drawing under microwave heating. The elastic moduli are controlled by three major factors: molecular orientation in the crystalline regions, fraction of noncrystalline taut tie molecules, and void content. The steep rise in the axial extensional modulus C33 and axial Young's modulus E0 with increasing draw ratio results from the alignment of chains in the crystalline blocks and an increase in the number of disordered taut tie molecules. Below the γ relaxation (located at 0°C at our measurement frequency of 10 MHz), these two factors also give rise to a slight decrease in the transverse extensional modulus C11, Young's modulus E90 and shear modulus C66. At high temperature where the amorphous regions have very low modulus, the stiffening effect of taut tie molecules becomes dominant, leading to an increase in all moduli as λ increases from 1 to 10. At higher λ the void fraction increases appreciably, causing small decreases in E90, C11, and C66 at all temperatures.  相似文献   

9.
Solid-state extrusion of high-density polyethylene (HDPE) has received considerable attention. It has been shown that extrudate may have high values of optical clarity, tensile modulus (~70 GPa = 7 × 1011 dyn/cm2), and c-axis orientation. The effects of extrusion conditions on the properties of the resultant fibers have, however, not yet been clarified. A systematic study has thus been made here to evaluate extrusion pressure, temperature, and extrusion (draw) ratio, and the molecular weight of extruded HDPE. The effects of extrusion ratio on the degree of crystallinity, melting behavior, crystal orientation, and dimensional change along the extrusion direction are reported.  相似文献   

10.
Poly(aryl-ether-ether-ketone) (PEEK) films and rods have been solid-state extruded at 154 and 310°C, respectively. The crystal orientation functions, melting behavior, density, and tensile properties of the drawn PEEK films (EDR ≤ 3.7) and rods (EDR ≤ 5.5) have been measured. As extrusion draw ratio (EDR) was increased, the c-axis orientation function, melting temperature, and tensile modulus and strength increased. Moduli up to 6.5 GPa and the strengths up to 600 MPa, 3 and 6 times the values of undrawn films, respectively, were obtained for the drawn films. The thermal expansivities along (α) and perpendicular (α?) to the draw direction of PEEK rods were measured from ?40 to +10°C. As EDR was increased, α? increased, but α decreased. At EDRs of 3.8 and 5.5, α even exhibited negative values (about ?5 × 10?6°C?1), probably due to reversible contraction of elongated tie-molecules.  相似文献   

11.
The five independent elastic moduli C11, C12, C13, C33, and C44 of oriented high-density polyethylene with draw ratio λ from 1 to 27 have been determined from ?60 to 100°C by an ultrasonic method at 10 MHz. At low temperature the sharp rise in the axial extensional modulus C33 with increasing λ and the slight changes in the other moduli result from chain alignment and the increase in the number of intercrystalline bridges connecting the crystalline blocks. At high temperature (say, 100°C) the transverse extensional modulus C11, as well as the axial (C44) and transverse (C66) shear moduli, also show substantial increases, reflecting the prominent reinforcing effect of stiff crystalline bridges in this temperature region where the amorphous matrix is rubbery. If the crystalline bridges are regarded as the fiber phase, the mechanical behavior can be understood in terms of the Halpin–Tsai equation for aligned short-fiber composites.  相似文献   

12.
The differential orientation of polymer chains has been measured in polystyrene (PS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) compatible blends. Density measurements are reported as a function of binary blend composition at 23°C. Drawing was performed by solid-state coextrusion. PS/PPO blend compositions of 90/10 and 75/25 were drawn within sandwiches of polyethylene at 145°C and isotactic polypropylene at 155°C, i.e. at ca. 25°C above the glass transition temperatures of the two blends. The change in Fourier-transform infrared dichroisms on drawing these blends was measured at 906 and 1190 cm?1, corresponding to predominantly PS and PPO, respectively. The orientation of PS and PPO was observed as a function of draw ratio λ in the range 1–5; orientations increased with λ for both PS and PPO in both blends but to different degrees. Both polymers decreased in orientation with increasing PPO content. Annealing with fixed ends showed that the PPO chains disorient more slowly than those of PS. All binary systems were found to be amorphous and compatible.  相似文献   

13.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

14.
Ultra-oriented high-density polyethylene fibers (HDPE) have been prepared by solid-state extrusion over 60–140°C range using capillary draw ratios up to 52 and extrusion pressures of 0.12 to 0.49 GPa. The properties of the fibers have been assessed by birefringence, thermal expansivity, differential scanning calorimetry, x-ray analysis, and mechanical testing. A maximum birefringence of 0.0637 ± 0.0015 was obtained, greater than the calculated value of 0.059 for the intrinsic birefringence of the orthorhombic crystal phase. The maximum modulus obtained was 70 GPa. The melting point, density, crystallinity, and negative thermal expansion coefficient parallel to the fiber axis all increase rapidly with draw ratio and at draw ratios of 20–30 attain limiting values comparable with those of a polyethylene single crystal. The properties of the fibers have been analyzed using the simple rule of mixtures, assuming a two-phase model of crystalline and noncrystalline microstructure. The orientation of the noncrystalline phase with draw ratio was determined by birefringence and x-ray measurements. Solid-state extrusion of HDPE near the ambient melting point produced a c-axis orientation of 0.996 and a noncrystalline orientation function of 0.36. Extrusion 50°C below the ambient melting point produced a decrease in crystallinity, c-axis orientation, melting point, and birefringence, but the noncrystalline orientation increased at low draw ratios and was responsible for the increased thermal shrinkage of the fibers.  相似文献   

15.
Poly(ethylene naphthalene‐2,6‐dicarboxylate) has been uniaxially stretched at different draw ratios and at two different temperatures below and above its glass transition (Tg ~ 120 °C) respectively, at 100 and 160 °C. Crystallinity has been evaluated from calorimetric analyses and compared to the values deduced by FTIR spectroscopic data. As expected, the obtained results are quite similar and show that films stretched at lower temperature (100 °C) are more crystalline than those stretched at 160 °C. Optical anisotropy associated with orientation has been evaluated by birefringence and show that films stretched at 100 °C are more birefringent than those stretched at 160 °C as a result of a higher chain relaxation above Tg. Polarized FTIR was also performed to evaluate the individual orientation of amorphous and crystalline phases by calculating dichroic ratios R and orientation functions 〈P2(cos θ)〉 and also show that amorphous and crystalline phases are more oriented in the case of films stretched below Tg. Nevertheless, the orientation of the amorphous phase is always weaker than that of the crystalline phase. Films stretched at 100 °C show a rapid increase in orientation (and crystallinity) with draw ratio and 〈P2(cos θ)〉 reaches a limit value when draw ratio becomes higher than 3.5. Films drawn at 160 °C are less oriented and their orientation is increasing progressively with draw ratio without showing a plateau. A careful measurement of the IR absorbance was necessary to evaluate the structural angles of the transition moments to the molecular chain axis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1950–1958, 2007  相似文献   

16.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

17.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   

18.
The modified Birnboim transducer and a computerized data acquisition and processing system (DAPS) for the measurement of viscoelastic properties of macromolecular solutions are described. The apparatus has a continuous frequency range from 0.01 to ca. 700 Hz and a viscosity range from 2 to ca. 30,000 poise (sample volume 1 to 1.5 cm2). Sample temperature is controlled to within 0.002°C from ?30°C to +80°C. Working displacements are 102 to 104 Å. The DAPS is designed for precise determinations of the magnitudes and relative phasing of two sinusoidally time-varying electrical signals (0.02%, 0.02°, respectively, for signals > 2 V peak) from 10?2 to 105 Hz. Cross-correlation techniques are used for noise rejection. For frequencies below 30 Hz values of the storage (G') and loss (G″) components of the complex shear modulus (G*) of 1 dyne/cm2 are determined to within 10% and 4%, respectively, for liquids of moderately low viscosity. Proportionately higher measurement accuracies for typical values of G' and G″ and the wide frequency and viscosity ranges permit extrapolation to infinite dilution and studies of limited molecular flexibility for many polymer—solvent systems.  相似文献   

19.
Quenched, quenched and annealed, and slowly cooled branched low-density polyethylene films were drawn at 25, 40, and 60°. The true draw ratio λL of the volume element was obtained and used to characterize the dependence on plastic deformation of the density, drawing stress, and work of plastic deformation, and the sorption and diffusion of methylene chloride. The effects observed are similar but less drastic than on linear high-density polyethylene. In particular, the transformation from the original lamellar to the final fibrous structure seems to be fastest for λL between 3 and 4. But the changes of vapor transport clearly indicate that the transformation is not yet complete even at the highest draw ratio λL = 6, just before the sample breaks. Annealing at 90°C of the drawn samples with free ends restores or even increases the transport properties beyond those of the undrawn sample without causing the fibrous structure to revert to the original lamellar structure.  相似文献   

20.
Quenched films of isotactic polypropylene were drawn at 110°C up to draw ratio λ = 18. The axial elastic modulus was measured as function of λ up to the highest achieved λ. The sorption and diffusion of CH2Cl2 at 25°C in the undrawn and drawn samples were studied. Exclusively transparent samples were used for the measurement of the density and transport properties. This reduces the maximum usable draw ratio to 15. The drawing process is inhomogeneous with neck propagation. In the neck the draw ratio increases by about 6. As a consequence of the increasing fraction of taut tie molecules the axial elastic modulus increases faster than the draw ratio. The transport parameters D, S, and λ indicate that the original lamellar morphology is completely transformed into the microfibrillar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号