共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization of polyethylene under hydrostatic pressures of 1–4.5 kbar is directly observed using pulsed proton NMR. The rate of growth of extended-chain polyethylene crystals is measured over this pressure range and to a maximum temperature of 227°C. The observed crystallization isotherms are superimposable on a log time scale; this implies a consistent mechanism for extended-chain growth over this pressure range. Avrami coefficients for high-pressure extended-chain crystallization are determined to be 1.3–1.7. A decrease of crystal nucleus surface free energies with increasing pressure is indicated. Findings are consistent with Wunderlich's model of initial folded-chain crystallization followed immediately by chain extension. Future applications of this NMR technique are briefly considered. 相似文献
2.
Crystallization and melting behavior of linear polyethylene under high pressures up to 6000 kg/cm2 has been investigated with a high-pressure dilatometer. Crystallization was carried out at a cooling rate of 1°C/min from the melt at each pressure. The samples were characterized by differential scanning calorimetry, density, and electron microscopy. Folded-chain crystals are formed in the low-pressure region below 2000 kg/cm2. Crystallization in the intermediate-pressure region between 2000 and 3500 kg/cm2 gives a mixture of folded-chain and extended-chain crystals. The extendedchain crystals are the more stable and predominate at increasing pressure. At high pressures above 4700 kg/cm2, two stages of crystallization and of melting can be observed. The phenomenon suggests that the two kinds of extended-chain crystals with different thermal stability, i.e., the ordinary extended-chain crystals and “highly extended-chain” crystals form through individual crystallization processes from the melt at high pressure. 相似文献
3.
A model for the crystallization kinetics of polymers is outlined and is used to interpret observations of the crystallization of polyethylene at high pressures. This model introduces a distinction between σe the lamellar surface energy which controls the lamellar thickness, and σe′, the surface nucleus surface energy which controls the growth rate. Differential scanning calorimetry and electron microscopy data for several polyethylenes crystallized at pressures of up to 8 kb are presented. From the dependence of lamellar thickness on the crystallization undercooling at 5 kb, it is found that σe increases markedly with pressure leading to the formation of very thick crystals at high pressures. The magnitude of the increase in σe is in agreement with σe values calculated from the dependence of melting temperatures on pressure. The nucleus surface energy σe′ is not expected to vary significantly with pressure, and estimates of growth rates of 5 kb which indicate that the growth rate does not vary significantly with pressure at constant under-cooling confirm this. Fractionation effects and the differences in behavior between different polyethylenes are also discussed. 相似文献
4.
The crystallization kinetics of a high molecular weight fraction of linear polyethylene was studied in dilute solutions of p-xylene, n-hexadecane, and decalin by dilatometric methods. For all solvents and temperatures, the experimental isotherms could be quantitatively described by the Avrami formulation for the complete transformation. This result is unique in the realm of polymer crystallization, since marked deviations from this theory are usually observed in more concentrated systems. The Avrami exponent is found to be n = 4 in all cases. The temperature coefficients of the rate constants are indicative of a nucleation controlled process. The data fit either a two-dimensional or three-dimensional nucleation mode, and a discrimination can not be made between these two cases. The interfacial free energies are found to be independent of the solvent medium. It is also shown that, irrespective of the type of nucleation control governing the kinetics, the same type governs the crystallite thickness of the lamella-like crystals that are formed. 相似文献
5.
Munehisa Yasuniwa Shinsuke Tsubakihara Masashi Yamaguchi 《Journal of Polymer Science.Polymer Physics》1997,35(4):535-543
Single crystal mat (SCM) samples of polyethylene (PE) were prepared from dilute solution of p-xylen, then they were annealed at pressures of 200 and 500 MPa. Lamellar thickness of the original and annealed SCM samples was measured by small-angle X-ray scattering method. Orientation of the molecular chain in those SCM samples was investigated by wide-angle X-ray diffraction pattern. From these X-ray measurements, annealing temperature dependence of the lamellar thickness, i.e., lamellar thickening, under high pressure was obtained. Melting process of the SCM samples was also investigated at 200 and 500 MPa by high pressure differential thermal analysis. Then correspondence between the lamellar thickening and the melting process was studied. The lamellar thickness increases markedly with approaching to the melting temperature of the orthorhombic crystal even in the high pressure region where the high pressure phase (hexagonal phase) appears. The annealing temperature dependence curve of the lamellar thickness at 200 MPa can be superimposed on the curve at 500 MPa by shifting the curve along the temperature scale by 47 K. Large scale lamellar thickening occurs in the orthorhombic crystal phase in the high pressure region. The formation process of extended-chain crystal is discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 535–543, 1997 相似文献
6.
Theodore Davidson Bernhard Wunderlich 《Journal of Polymer Science.Polymer Physics》1969,7(12):2051-2059
A report on crystallization of polyethylene at elevated pressures to an extended-chain morphology is presented. The crystals have been characterized by electron microscopy and density determination. Pressure, supercooling (temperature), and crystallization time have been varied to find the best conditions for production of perfect crystals. At 10–30°C supercooling completely crystallized polyethylene was obtained between 4.5 and 7 kb crystallization pressure in 1–8 hr. Analysis of fracture surfaces of samples crystallized for different lengths of time shows an increase in size and number of crystal lamellae and an improvement of extended chain crystals in the early stages of crystallization. A further improvement of the less well crystallized material between the lamellae occurs after 15 min of crystallization time. 相似文献
7.
The design of a differential thermal analysis apparatus for use at elevated pressure is described. Experiments on melting and crystallization of folded-chain crystals of polyethylene and poly(ethylene–butene-1) copolymer, and melting of extended-chain polyethylene crystals have been conducted at pressures up to 4200 bars. The precision in transition temperature measurement was ±1°C. The Clausius-Clapeyron equation predicts the melting point increase with pressure at atmospheric pressure to be 32.0°C/kb. The melting point depression due to copolymerization remained constant over the complete pressure range analyzed on the poly(ethylene–butene-1) used in this study. Crystallization of polyethylene is retarded at elevated pressures, and a 50% larger degree of supercooling is necessary at 5000 bars to give a crystallization rate equal to that observed at atmospheric pressure. The difference in melting point between folded-chain and extended-chain polyethylene increases from 8.4°C at 1 bar to 25.6°C at 3000 bars. 相似文献
8.
9.
The effect of pressure on the melting point and volume of fusion of polyethylene was studied by high-pressure dilatometry. Starting materials were crystallized slowly from the melt under pressures of 1500, 3500, 5130 kg/cm2, and 1 atm. It has been shown that the unusual behavior observed at pressures above 4000 kg/cm2 is due to crystallization and melting of two kinds of extended-chain crystals differing in thermal stability. These are designated as ordinary extended-chain and highly extended-chain crystals, respectively. The relation between pressure P and melting temperature Tm of folded-chain, ordinary extended-chain, and highly extended-chain polyethylene was determined precisely. At pressures up to about 3000 kg/cm2, plots of P against Tm for the crystal forms have almost the same curvature and then become parallel. But at pressures above 4000 kg/cm2, ordinary extended-chain crystals show a linear increase of Tm with a constant slope of about 70 atm/deg. Curve for the highly extended-chain crystals changes in slope from 70 to 50 atm/deg at pressures between 3500 and 4300 kg/cm2, and then show a sharp increase of Tm with increasing pressure. Experiments show that the meltingpoint curve of the highly extended-chain crystals overlaps that of the ordinary extended-chain crystals at pressures below 4000 kg/cm2. Annealing experiments with folded-chain and ordinary extended-chain crystals have been made under high pressure. It is suggested that the formation of highly extended-chain crystals occurs stepwise through the formation and reorganization of ordinary extended-chain crystals from the original folded-chain crystals by a mechanism of partial melting and recrystallization at pressures above 4000 kg/cm2. 相似文献
10.
Thermal behaviors of extended-chain crystals of polyethylene formed during various crystallization processes and conditions under about 5000kg/cm2 were studied by high-pressure dilatometry and differential scanning calorimetry. The experiments indicate that by isothermal crystallization at small undercoolings for prolonged periods, the products show two endothermic peaks in the melting region of the usual extended-chain crystals. This means of the presence of a bimodal lamellar thickness distribution in the extended-chain crystals. A phase diagram has been made for pressures up to 5000 kg/cm2. The experimental results confirm the existence of two kinds of extended-chain crystals, i.e., ordinary extended-chain and highly extended-chain crystals, as suggested previously by the authors. 相似文献
11.
J. L. Kardos H.-M. Li K. A. Huckshold 《Journal of Polymer Science.Polymer Physics》1971,9(11):2061-2080
Two linear polyethylene fractions (Mη, 11,260 and 100,000) and mixtures of these fractions have been isothermally crystallized from the melt under pressures up to 3000 atm. Characterization of individually crystallized fractions with transmission electron microscopy indicates that pressure can be used to produce a crystallite whose thickness is a measure of the chain length within it. Although the high molecular weight fraction yields spherulites containing individually varying lamellae thicknesses, the maximum thickness of each lamella is a measure of the chain length within it. Both electron micrographs and differential thermal analysis results show that crystallization of homogeneous mixtures of the high and low molecular weight fractions under high pressure results in a distinct fractionation and segregation according to molecular weight. 相似文献
12.
Atomic force microscopy(AFM),wide-angle X-ray diffraction(WAXD) and differential scanning calorimetry are used to analyze the crystallization morphology and melting behavior of 4-arm PEO-b-PCL under high-pressure CO2.It is demonstrated that CO2 has certain effect on the melting and crystallization behavior of the samples.After crystallization under CO2 at 4 MPa,spherulites with concentric ring-banded structure are formed which are composed of crystals with periodic thickness variation,and the band distance decreases with increasing treatment pressure.Due to the plasticization effect of CO2,depression of the melting temperature is observed with sorption of CO2 in polymers. 相似文献
13.
The melting behavior of spherulites in thin sections of isotactic polypropylene bulk samples and high-density polyethylene thin films crystallized isothermally at various temperatures has been studied by polarized light microscopy. The regions around cavities and multiple boundary points between spherulites have higher melting temperatures than the other parts of spherulites crystallized in Regime III. The increase in melting temperature is explained as a result of crystallization under negative pressure arising locally in pockets of occluded melt due to density change during spherulitic crystallization. The negative pressure lowers locally the equilibrium melting temperature and therefore decreases the undercooling, which results in an increase in lamellar thickness. Sectioning of bulk samples releases frozen negative pressure and reveals the increase in melting temperature of those parts of spherulites that were crystallized at lower undercooling. © 1993 John Wiley & Sons, Inc. 相似文献
14.
Gang Yang Xiao-xi Li Jing-hui Yang Ting Huang Nan Zhang Xiu-ru Liu Yong Wang 《Colloid and polymer science》2013,291(9):2213-2223
The preparation of γ-phase in polypropylene is still an interesting issue in a long-term. In this work, we introduced a highly effective α-phase nucleating agent 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol derivatives (DMDBS) into polypropylene block copolymer (PPB) and investigated the crystallization behaviors of nucleated PPB sample under high pressure. The crystallization and melting behaviors of samples were characterized by differential scanning calorimetry, and the crystalline structure as well as the relative fraction of γ-phase in the sample was characterized by wide-angle X-ray diffraction (WAXD) and two-dimensional WAXD. Scanning electron microscope was used to characterize the supermolecular structure of samples. The results show that the effects of DMDBS and high pressure on crystallization behavior of PPB were dependent on the content of DMDBS. When the content of DMDBS is smaller than the critical value, there is a synergistic effect between DMDBS and high pressure to promote the formation of γ-phase. Specifically, the critical pressure under which γ-phase dominates completely is also decreased dramatically. When the content of DMDBS is higher than the critical value, there is a competition between the effect of DMDBS, which promotes the formation of α-phase and the effect of high pressure which promotes the formation of γ-phase. 相似文献
15.
Yoji Maeda Hisaaki Kanetsuna Katsuharu Tagashira Tetuo Takemura 《Journal of Polymer Science.Polymer Physics》1981,19(9):1325-1331
The relation between the thermal behavior of extended-chain crystals (ECCs) of polyethylene and the phase transitions, i.e., orthorhombic ? hexagonal ? melt, of polyethylene at high pressures above about 400 MPa has been studied by high-pressure differential thermal analysis (DTA), and with a high-pressure and high-temperature x-ray diffraction apparatus equipped with a position-sensitive proportional counter measuring system. The original sample used in this study consists mainly of two kinds of ECC, which we designate as “ordinary extended-chain” crystals (OECCs) and “highly-extended-chain” crystals (HECCs). Experimental results at pressures below 300 MPa substantiate the results previously reported: i.e., the phase diagram indicating the relation between the melting temperatures and pressure for the OECCs and HECCs can be determined for pressures up to 500 MPa. In heating at pressures above about 500 MPa, the peak intensity of the (100) reflection of the hexagonal structure decreases in two stages with increasing temperature. The phenomenon corresponds to the thermal behavior determined by high-pressure DTA in which two small endothermic peaks can be observed at temperatures above that of the crystal transition evidenced by the strong peak. This phenomenon suggests melting in two stages of hexagonal structures with different thermal stabilities, and that the change at higher temperature may be due to fusion of the hexagonal phase annealed either below or above the transition temperature. 相似文献
16.
Ryong-Joon Roe C. Gieniewski R. G. Vadimsky 《Journal of Polymer Science.Polymer Physics》1973,11(8):1653-1670
Single crystals of linear polyethylene, prepared from a dilute xylene solution, were annealed below their melting temperature under atmospheric and 6 kbar pressure. In order to preserve the identity of the single crystals, they were suspended in an inert solvent medium, silicone oil and ethanol, during annealing. Examination of the annealed crystals under an electron microscope revealed development of numerous reorganization centers consisting of a central, elongated hole surrounded by a raised edge. Characteristics of these holes, especially their location and orientation, were interpreted in terms of the molecular packing that existed prior to the annealing and the mechanism of molecular reorganization that occurred during the annealing. The effect of high pressure was primarily to flatten out the crystals and to increase the number of reorganization centers, but the height of the raised edges remained about the same irrespective of the applied pressure. The present study also showed examples pointing to the importance of differentiating the annealing behavior of monolayer crystals from that of multilayer crystals. 相似文献
17.
B. W. Hutzler L. D. B. Machado A. -L. C. H. Villavicencio A. B. Lugo 《Radiation Physics and Chemistry》2000,57(3-6):431-434
This study compares the effects of radiation dose on the isothermal and non-isothermal crystallization of LLDPE, LDPE and HDPE by differential scanning calorimetry (DSC). It includes qualitative comparison of the non-isothermal data and quantitative calculations of Avrami parameters for crystallization rate and nucleation mode. The isothermal crystallization allowed the observation of the changes in the crystallization rate, related to the decrease in the crystallization temperature caused by the crosslinking of the polymer. It was also observed by the non-isothermal crystallization, the development of crystallites of very different sizes in the polymer. 相似文献
18.
Rahul P. Patki 《European Polymer Journal》2008,44(2):534-541
This rapid communication reports a summary of the key findings of crystallization kinetics studies of unfractionated high density (linear) polyethylene at extremely large supercoolings. We report, for the first time, the maximum in crystal growth rate-crystallization temperature data for linear polyethylene, which has been sought by many researchers since the 1950s. The maximum growth rate was found to occur in the range of 70-75 °C with two separate methods. The kinetics studies were performed using a newly developed quench-crystallization technique based on depolarized reflection light microscopy that is capable of achieving enormously higher quench rates than existing methods. Typical onset crystallization temperatures accessed with this technique range from 40 to 90 °C. Bulk growth rates of crystals were obtained as the reciprocal of crystallization half times measured from the change in the depolarized light intensity upon direct crystallization from the melt. Separately, radial growth rates of spherulites were measured over a wide range of supercoolings. Secondary nucleation analysis of the crystal growth rates resulted in single linear fits extending into deep regime III, suggesting no change in mechanism of formation of the crystals at the largest supercoolings. The deeply quenched films, crystallized at temperatures below the maximum, contain non-impinged spherulites, capable of further crystallization. 相似文献
19.
Holmqvist P Lettinga MP Buitenhuis J Dhont JK 《Langmuir : the ACS journal of surfaces and colloids》2005,21(24):10976-10982
A systematic experimental study of dispersions of charged colloidal spheres is presented on the effect of steady shear flow on nucleation and crystal growth rates. In addition, the nonequilibrium phase diagram as it relates to the melting line is measured. Shear flow is found to strongly affect induction times, crystal growth rates, and the location of the melting line. The main findings are that (1) the crystal growth rate for a given concentration exhibits a maximum as a function of the shear rate; (2) contrary to the monotonic increase in the growth rate with increasing concentration in the absence of flow, a maximum of the crystal growth rate as a function of concentration is observed for sheared systems; and (3) the induction time for a given concentration exhibits a maximum as a function of the shear rate. These findings are partly explained on a qualitative level. 相似文献
20.
Fang‐Chyou Chiu Qiang Fu Ya Peng Hsi‐Hsin Shih 《Journal of Polymer Science.Polymer Physics》2002,40(4):325-337
Metallocene polyethylene (mPE) fractions are recognized as being more homogeneous with respect to short‐chain branch (SCB) distribution as compared with unfractionated mPEs. Differential scanning calorimetry and polarized optical microscopy (POM) were used to study the influences of SCB content on the crystallization kinetics, melting behavior, and crystal morphology of four butyl‐branched mPE fractions. The parent mPE of the studied fractions was also investigated for comparative purposes. mPE fractions showed a much simpler crystallization behavior as compared with their parent mPE during the cooling experiments. The Ozawa equation was successfully used to analyze the nonisothermal crystallization kinetics of the fractions. The Ozawa exponent n decreased from about 3.5 to 2 as the temperature declined for each fraction, indicating the crystal‐growth geometry changed from three‐dimensional to two‐dimensional. For isothermal crystallization, the fraction with a lesser SCB content exhibited a higher crystallization temperature (Tc) window. The results from the Avrami equation analysis showed the exponent n values were around 3 (with minor variation), which implied that the crystal‐growth geometry is pseudo‐three‐dimensional. Both of the activation energies for nonisothermal and isothermal crystallization were determined for each fraction with Kissinger and Arrhenius‐type equations, respectively. Double melting peaks were observed for both nonisothermally or isothermally crystallized specimens. The high‐melting peak was confirmed induced via the annealing effect during heating scans. The Hoffman–Weeks plot was inapplicable in obtaining the equilibrium melting temperature (Tm°) for each fraction. The relationship between Tc and Tm for the fractions is approximately Tm = Tc (°C) + 8.3. The POM results indicated that the crystals of parent or fractions formed under cooling conditions did not exhibit the typical spherulitic morphology as a result of the high SCB content. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 325–337, 2002 相似文献