首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For calculating the ratio of the intrinsic viscosities of branched and linear polymers of the same molecular weight, [η]B/[η]L, a new theory taking into account the excluded volume effect is presented. By using the modified Flory equation, the excluded volume effect of branched polymers is predicted with the aid of the first-order perturbation theory. The linear expansion factor αs is converted to the hydrodynamic expansion factor αη by using the Kurata-Yamakawa theory. Our calculated results, i.e., [η]B/[η]L and 〈s2B/〈s2L, agree well with experiment for various type branched polymers, i.e., randomly branched and comb-shaped polymers of poly(vinyl acetate).  相似文献   

2.
The different types of morphology that can be developed in a large number of low-density (branched) polyethylene whole polymers, as well as in a series of fractions, have been studied for two different extreme crystallization modes. Concomitantly, thermodynamic properties of the same samples have also been determined. After isothermal crystallization at elevated temperatures, spherulitic structures are found in all the whole polymer samples. On the other hand, after rapid crystallization a variety of different types of supermolecular structures are observed which are shown to depend systematically on the concentration of side-chain branches and the relative proportion of high molecular weight species in the sample. This temperature dependence of the morphological forms is opposite to that previously reported for linear polyethylene. The studies with the fractions show that the individual species are not the cause of this behavior; rather, the total composition is the important factor. The thermodynamic properties are also quite different from those of linear polyethylene in showing virtually no molecular weight dependence and being governed primarily by the concentration of short-chain branches. The degrees of crystallinity as determined from density and enthalpy of fusion measurements do not vary much with the two extreme crystallization conditions employed, are not sensitive to the morphology, and differ from one another, even when well-developed spherulites are formed. A major influence of the branching concentration on these properties is clearly indicated.  相似文献   

3.
The issue of multiple equilibrium phases in compositionally heterogeneous random copolymers is studied with an ethylene-butene copolymer representative of many linear low-density polyethylenes (LLDPE). This material has a dispersed minority phase (volume fraction ?β ≈ 0.02) of highly branched, amorphous chains. A thermodynamic calculation of the equilibrium liquid state is done using the distribution of chain branching from temperature rising elution fractionation and the Flory-Huggins interaction parameter χAB for linear and ethyl branched C4H8 repeat units. The calculation indicates that this copolymer is metastable, between the binodal and spinodal at a melt temperature of 150°C. The predicted volume fraction of the second phase, ?β = 0.016, is in good agreement with experiment. This work is the first to compare directly the observed and calculated two-phase behaviors in a random copolymer. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
姬相玲 《高分子科学》2015,33(3):508-522
A low-density polyethylene(LDPE) resin with excellent processing and film-forming properties is fractionated through temperature rising elution fractionation(TREF) technique. The chain structures of both the original resin and its fractions are further analyzed using high-temperature gel permeation chromatography(GPC) coupled with triple detectors(refractive index(RI)-light scattering(LS)-viscometer(VIS)), 13C-nuclear magnetic resonance spectroscopy(13C-NMR), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and successive selfnucleation/annealing(SSA) thermal fractionation. The 13C-NMR results show that the original resin has both short chain branch(SCB)(2.82 mol%) and long chain branch(LCB)(0.52 mol%) structures. The FTIR results indicate that the methyl numbers(per 1000 C) of the fractions gradually decrease from 81 to 46 with increasing elution temperature from 25 °C to 75 °C. The TREF-GPC cross-fractionation results show that the main component is collected at around 68 °C. The molecular weight of the components in the high elution temperatures of 60 °C to 75 °C is from 2.0 × 103 g/mol to 2.0 × 106 g/mol, and the relative amount is more than 80%. In the low elution temperature region below 50 °C, the molecular weights of the components range from 1.0 × 103 g/mol to 1.6 × 104 g/mol, and the relative amount is less than 10%. In the DSC results, the melting peaks of the fractions gradually increase from 80.1 °C to 108.8 °C with elution temperature. In the SSA thermal fractionation, each resin fraction shows a broad range of endotherm with multiple melting peaks(more than eight peaks). The melting peaks shift toward high temperatures with the elution temperature. The characteristic chain microstructure for the resin is also discussed in detail.  相似文献   

5.
Light-scattering and viscometric measurements on dilute solutions of five branched polystyrene polymers are reported. The data include studies in decalin as a function of temperature, including the theta temperature, and in toluene. The results for the radius of gyration and the second virial coefficient are not in accord with the two parameter random-flight model. Possible causes of this descrepancy are considered. It is shown that the intrinsic viscosity of branched chains is not uniquely determined by the radius of gyration.  相似文献   

6.
For a number of fractions and unfractionated samples of polylaurolactam, molecular weights (Mw = 1 × 104?12·5 × 104) were measured by the light-scattering method in a mixed solvent of m-cresol with 60 vol. % 2,2,3,3-tetrafluoropropanol; intrinsic viscosities were determined in m-cresol and 96% H2SO4, and the constants of the Mark-Houwink equation were calculated. The calculated values of the characteristic ratio of unperturbed dimensions (virtually identical for m-cresol and 96% H2SO4) were compared with the respective values for polypyrrolidone and polycaprolactam. It was found that the higher frequency of the CONH-groups reduces the rigidity of the polyamide chain.  相似文献   

7.
The dynamic mechanical properties of branched polyethylenes in the molten state were determined in the frequency range 10?3–10 radians/sec. The materials tested have remarkably similar rheological properties even though they vary greatly in molecular weight and molecular weight distribution. The similarity in properties is attributed to the influence of long chain branching on the relaxation spectra. A mechanistic argument is proposed to relate the observed behavior to molecular entanglement coupling. The concept of entanglement coupling involving long-chain branching leads to the expectation that the quasi-Newtonian and non-Newtonian viscosities of branched polymers may be either greater or less than those of linear polymers of the same species, which have comparable molecular weights. This is borne out by experiment.  相似文献   

8.
Melting and crystallization phenomena in blends of a linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with a conventional low-density (branched) polyethylene (LDPE) are explored with emphasis on composition by differential scanning calorimetry (DSC) and light scattering (LS). Two endotherms are evident in the DSC studies of the blends, which suggests the formation of separate crystals. Light-scattering studies indicate that the blend system is predominantly volume filled by the LLDPE component whereby the LDPE component crystallizes as a secondary process within the domain of the LLDPE spherulites. In contrast to those of the LLDPE/HDPE blends, the mechanical and optical relaxation behavior of the LLDPE/LDPE blends are dominated by the LLDPE component in the vicinities of γ and β regions, whereas the trend reverses at high temperature α regions. This observation is accounted for on the basis of the relative restrictions imposed by the deformation of spherulites (which are primarily made up of the LLDPE component) at different time scales.  相似文献   

9.
Light scattering and viscometric studies have been carried out on dilute solutions of a polybenzimidazole in N,N-dimethylacetamide. The data, which span the molecular weight range 2.9 ≦ 10?4Mw ≦ 23.3, and the temperature range 290 ≦ T/K ≦343, yield the dependence of the mean-square radius of gyration 〈s2LS, the second virial coefficient A2, and the intrinsic viscosity [η] on molecular weight Mw and temperature. The unperturbed mean-square radius 〈sLS was calculated using experimental values of 〈s2LS and A2. It was found that excluded volume effects on 〈s2LS are very small. The unperturbed hydrodynamic chain dimension 〈sη was estimated by considering draining effects. A small value of the draining parameter was obtained. Analysis of the temperature dependence of A2 and [eta;] leads to the conclusion that this system approaches a lower theta temperature with increasing temperature. The steric factor σ = 〈s〉/〈sf, based on the value of 〈sf calculated for the polymer chain with free rotation, is nearly unity. Most of these properties can be interpreted in terms of long rotational units within the main chain.  相似文献   

10.
Number-average molecular weights of fractions of epoxy resins were estimated by vapor-pressure osmometry and size exclusion chromatography coupled with multiple-angle light scattering. Potential reasons for differences between the two sets of data are examined. The molecular weight dependences of the intrinsic viscosity in tetrahydrofuran and chloroform are discussed in terms of theories which take into account the low-molecular weight character of poly(hydroxy ether) chains. The polymer-solvent interaction parameter is estimated. The impact of the presence of branched chains on the results of size exclusion chromatography is examined. It is shown that the universal calibration of size exclusion chromatographic columns by polystyrene is reliable at molecular weights above 2000 only.  相似文献   

11.
Quenched, quenched and annealed, and slowly cooled branched low-density polyethylene films were drawn at 25, 40, and 60°. The true draw ratio λL of the volume element was obtained and used to characterize the dependence on plastic deformation of the density, drawing stress, and work of plastic deformation, and the sorption and diffusion of methylene chloride. The effects observed are similar but less drastic than on linear high-density polyethylene. In particular, the transformation from the original lamellar to the final fibrous structure seems to be fastest for λL between 3 and 4. But the changes of vapor transport clearly indicate that the transformation is not yet complete even at the highest draw ratio λL = 6, just before the sample breaks. Annealing at 90°C of the drawn samples with free ends restores or even increases the transport properties beyond those of the undrawn sample without causing the fibrous structure to revert to the original lamellar structure.  相似文献   

12.
A blend system of linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with high-density (linear) polyethylene (HDPE) is investigated by differential scanning calorimetry (DSC), wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), Raman longitudinal-acoustic-mode spectroscopy (LAM), and light scattering (LS). For slowly cooled or quenched samples, one single endotherm is evident in the DSC curve which depends on the composition. No separate peaks are observed in the WAXD, SAXS, Raman-LAM, and LS studies on the LLDPE/HDPE blends. This observation along with the fact that no peak broadening is observed suggests that these peaks are associated with the presence of a single component. In no case did we see double peaks or a broadened peak that might be associated with two closely spaced unresolved peaks. This suggests that segregation has not taken place at the structural levels of crystalline, lamellar, and spherulitic textures. A single-step drop in the scattered intensity (IHv) as a function of temperature is seen in the LS studies. It is therefore concluded that cocrystallization between the LLDPE and HDPE components occurs. The mechanical and optical α, β, and γ relaxations of these blends are explored by dynamic birefringence. The 50/50 blend displays the intermediate relaxation behavior between those of the components in all α, β, and γ regions. This observation is reminiscent of the characteristic of the typical miscible blends.  相似文献   

13.
Sodium amylopectin xanthate, prepared by xanthation of potato amylopectin in alkaline medium, was fractionated and the fractions in 1M NaOH were characterized by viscometry and light scattering. The expansion factor α was determined from the expression due to Orofino and Flory. The value of a of the Mark-Houwink relation, [η] = KMa, was also determined. Its weight-average molecular weight, end-to-end distance, branching, and other parameters in alkali solution were also evaluated. From the data, it was concluded that the sodium amylopectin xanthate molecule had a polydisperse random-coil chain configuration in 1M NaOH and had no tendency to aggregate in this medium.  相似文献   

14.
Sodium cellulose sulphate (NaCaS), with degree of substitution (DS) of 1.90, was synthesized by reacting samples of cellulose, covering a wide range of average molecular weight, with S03/dimethyl formamide complex. A solution of NaCS in 0.5 M aq. NaCl was studied by solution viscometry, light scattering and membrane osmometry. The solution was dialysed against solvent. The following MarkHouwink-Sakurada equation and relation between the z-average radius of gyration and weightaverage molecular weight, Mw, were established for 7.2 × 104 ? Mw ? 1.5 × 106 at 25°.The NaCS with salt system was analysed according to the theory of linear non-ionic polymers. Flory's viscosity parameter φ is significantly molecular weight dependent. The partially free draining effect and the excluded volume effect were estimated and the former predominated. The unperturbed chain can be regarded as Gaussian and its dimension A was found to be 1.21 × 10?8 cmand the conformation parameter a was 2.9.  相似文献   

15.
The values of drawing dependence of the density ρ, axial elastic modulus E, and maximum draw ratio λ of crosslinked low-density polyethylene (CLPE) rather similar to those obtained with un-crosslinked branched material of similarly low density. Very much the same applies to the equilibrium concentration of sorbed methylene chloride in the amorphous component and the zero-concentration diffusion coefficient D0. The exponential concentration coefficient γD , however, even at the maximum draw ratio, shows no indication of the rapid increase so characteristic of the completed transformation from the lamellar to the fibrous structure. On the basis of this finding, one can understand the small deviations in the dependence of the mechanical properties between the crosslinked and uncrosslinked branched material. The segments between the crosslinks, much shorter than the free molecules, favor the formation of the interfibrillar tie molecules that limit the drawability of the sample. But since they cannot be extended to the same length as the free molecules, they contribute less to the total fraction of tie molecules per amorphous layer and hence yield a smaller axial elastic modulus.  相似文献   

16.
Six-arm star polystyrenes having varying numbers of short and long arms attached to the same molecule have been synthesized by anionic polymerization. The molecules have been characterized by high resolution size exclusion chromatography using multiangle light scattering and viscosity detectors. This technique has allowed the radii of gyration and intrinsic viscosities to be measured for stars with each possible combination of arms. The branching parameters g and g′ are computed and compared with theoretical expectations. It is found that short arms add preferentially to the stars, because of reduced steric effects. The molecule with one long and five short arms exhibits behavior closest to that of a linear chain (largest branching ratios). The effect of arm polydispersity on solution properties of stars is discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) with different copper contents were prepared by melt mixing. The copper powder particle distributions were found to be relatively uniform at both low and high copper contents. There was cluster formation of copper particles at higher Cu contents, as well as the formation of percolation paths of copper in the PE matrices. The DSC results show that Cu content has little influence on the melting temperatures of LDPE and LLDPE in these composites. From melting enthalpy results it seems as if copper particles act as nucleating agents, giving rise to increased crystallinities of the polyethylene. The thermal stability of the LDPE filled with Cu powder is better than that for the unfilled polymer. The LLDPE composites show better stability only at lower Cu contents. Generally, the composites show poorer mechanical properties (except Young's modulus) compared to the unfilled polymers. The thermal and electrical conductivities of the composites were higher than that of the pure polyethylene matrix for both the LDPE and LLDPE. From these results the percolation concentration was determined as 18.7 vol.% copper for both polymers.  相似文献   

18.
The solution properties of cellulose derivatives are of interest from both technological and purely scientific aspects. At high concentrations these solutions form liquid crystalline structures. In dilute solution cellulosic chains can be described as semiflexible or wormlike with properties intermediate between random coils and rigid rods. A series of fractions of cellulose propionate have been examined by dilute solution viscometry, static and dynamic light scattering, and polarizing microscopy. Power law exponents are considerably larger than those observed for flexible chains and analysis of the intrinsic viscosity and hydrodynamic radii has yielded chain diameters and Kuhn statistical segment lengths. Corresponding aspect ratios from the hydrodynamic measurements are in good agreement with those obtained from polarizing microscopy, as analyzed in light of Flory's theory. Some aggregation and specific solvent effects have been observed, however separation of these effects has proven to be difficult. Results of these studies are compared to previous work for other cellulose derivatives. ©1995 John Wiley & Sons, Inc.  相似文献   

19.
A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A “green” mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04 % (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15?×?4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min?1. The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid–base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, ?0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914–0.99997, n?=?6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100?±?5 % for all compounds. The intraday method precision was determined as RSD, and the values were lower than 1.00 %.
Green chromatography approach – advantages of the technique  相似文献   

20.
Dilute solution properties of fractionated poly(butyl methacrylate-co-styrene) PBMAS prepared by bulk polymerization, have been investigated by means of light scattering, viscometry, and osmometry. As the composition heterogeneity was narrow, the characterization of the copolymer was effected in a single solvent by light scattering. Infrared and nuclear magnetic resonance spectra were used to determine the composition and sequence distribution of monomer units of the copolymer. The molecular weight dependence of the limiting viscosity number and of the root-mean-square end-to-end distance have been established. The Mark-Houwink relation showed that methylethyl ketone is a good solvent compared with cyclohexane. The validity of various extrapolation procedures that have been proposed to calculate the unperturbed dimensions have been examined. Root-mean-square end-to-end distances have been calculated from the Debye-Bueche and Kirkwood-Riseman methods and compared with the experimental values. The molecular weight dependence of the second virial coefficient agreed well with that calculated from the Orofino-Flory equation. The value of the steric hindrance parameter σ for the copolymer has been found to be 2.27 compared to 2.05 for poly(butyl methacrylate) and 2.22 for polystyrene, which indicates that PBMAS is a stiffer chain in solution than those of the constituent homopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号