首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Transient laminar natural convection of air in a tall cavity has been studied numerically. The Navier-Stokes and Energy equations were solved by the accurate projection method (PmIII), in which the derived Poisson equation for pressure potential was solved by the approximate factorization one method (AF1). The aspect ratio of the tall cavity is 16, and the Prandtl number of air filled in the tall cavity is 0.71. To obtain the numerical results of heat transfer by natural convection of air in the tall cavity, the second order schemes for the space and time discretizations were utilized. The availability of the numerical algorithm was also assessed by considering the natural convection of air in a square cavity which is differentially heated from side walls. It was found that the overall Nusselt numbers for the Rayleigh numbers covering the range from 1000 to 100000 reveal a good agreement with measured data. When Ra takes the value in the range from 100000 to 600000, the overall Nusselt number have a relative deviation less than 18% from the experimental data. For the suddenly heating mode, the multicellular flow pattern occurs when Rayleigh number belongs to the range of Ra from 7000 to 20000. or greater than 115000. At the critical number of cats' eye instability, the cell distance is just twice of the cavity width. This is rather similar to the observed result for Bénard problem. When Ra is over 115000, a further increase of heat flux across the tall cavity causes serious cell-breaking. There are 8 cells when Ra = 600000.  相似文献   

4.
Two dimensional unsteady Navier-Stokes and the energy equations are solved using finite element method for the case of flow past five row deep in-line bundle of circular cylinders with pitch to diameter ratios (PDR) of 1.5 and 2.0. Numerical solutions of governing equations have been obtained using Euler's explicit algorithm. Analysis have been made for Reynolds number of 100 and Prandtl number of 0.71. The effect of Richardson number (Ri=Gr/Re 2) on the flow and heat transfer have been investigated forRi=?1.0, ?0.5, 0.0, +0.5 and +1.0. Streamlines, isovorticity lines, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distribution around the cylinders are presented. Results obtained for forced convection (Ri=0.0) agree well with the available experimental and numerical results. There is considerable effect of buoyancy over tube bundles both in buoyancy aiding and opposing flows.  相似文献   

5.
A numerical method is used to investigate the influence of free convective motion of a gas on the process of heterogenous ignition. The dependence of the critical condition for ignition on the intensity of convection is obtained. The flow structure for different parameters and the features of the ignition process are investigated. It is noted that the ignition begins at a point and there is subsequent transition of the complete surface of the catalyst to the high-temperature region by a combustion wave that travels along the catalyst.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 144–149, January–February, 1980.  相似文献   

6.
7.
Steady two‐dimensional natural convection in an inclined parallel‐walled channel was investigated numerically. The full elliptic forms of conservation equations were solved together and the velocity vectors, temperature contours and local and average Nusselt number distribution were obtained. The comparisons of local and average Nusselt number with published experimental and numerical results indicate very good agreement. Results are presented for a single aspect ratio, L/b=24, over the range of Rayleigh number of 3–1000 and angle of inclination 0–90°. The results indicate that the overall channel average Nusselt number is reduced as the inclination angle is increased. Significant reductions in the overall Nusselt number are exhibited at high angle of channel inclination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.  相似文献   

10.
11.
Real-time holographic interferometry is used to study free convection in cavities heated from below and bounded by Plexiglas windows. Advantages and shortcomings of this visualization technique applied to such Plexiglas boxes are discussed. As Plexiglas has a high temperature-dependent refractive index, temperature fields in the windows and the fluid layer are visualized. These visualizations furnished proof of a pronounced thermal influence of the walls on the flow pattern based on what we call “thermal memory” of Plexiglas.  相似文献   

12.
采用局部非热平衡模型,在方腔左侧壁面温度正弦波变化、右侧壁面温度均一的边界条件下,通过SIM-PLER算法数值研究了固体骨架发热多孔介质方腔内的稳态非达西自然对流,主要探讨了不同正弦波波动参数N及方腔的高宽比M/L对方腔内自然对流与传热的影响规律。计算结果表明:正弦波温度边界使得方腔内的流场出现了复杂的变化,流体及固体区域左侧壁面附近出现了周期性的正负变化的温度场分布,左侧壁面局部Nusselt数出现了周期性的震荡现象;存在一个最佳温度波动参数N=1,此时多孔介质方腔内的整体散热量达到最大值;增加方腔高宽比会显著地削弱方腔内的自然对流传热过程,小高宽比也会在一定的程度上削弱多孔介质方腔内的对流传热。  相似文献   

13.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 35–39, January–February, 1991.  相似文献   

14.
15.
The effect of small inclinations and low-amplitude rocking on thermal convection in an air-filled cube with sides 3 cm long has been investigated experimentally and numerically for steady and periodic heating from above. Expressions have been obtained for the dependence of the temperature difference between two points inside the cube on the angle of inclination, the applied vertical temperature difference, the rocking frequencies and the oscillations of the heating power. The possibility of estimating the magnitude and direction of the microacceleration vector on the basis of temperature field measurements made under orbital flight conditions is discussed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 67–75, September–October, 1994.  相似文献   

16.
17.
Thermal conduction and thermal convection are two major cooling methods. The experiment applies these two methods simultaneously to cool photo-masks. The combination of thermal conduction and thermal convection can solve the problems of thermal expansion of masks during long-term exposure. Highly thermal conductive material can conduct heat that accumulates on chromium to the diamond film. However, heat that is conducted on the diamond film is not easily discharged into the air. Therefore, a thermal convection method to cool a diamond film is designed. The method involves blowing N 2 gas at 23°C onto the surface of masks.  相似文献   

18.
A numerical study of double-diffusive natural convection in an enclosure with a partial vertical heat and mass sources for an aspect ratio Ar = 4 has been carried out. The influence of various dimensionless parameters (Rayleigh number, buoyancy ratio, source location, Lewis number, and source length) on the flow behavior are investigated. Correlations of average Nusselt and Sherwood numbers are obtained as function of two parameters (Ra, d) and (Le, d), respectively.  相似文献   

19.
Thermocapillary flows in an infinitely long liquid cylinder surrounded by a coaxial gas layer with a controlled flow rate and the stability of such flows are investigated. In the layers a constant axial temperature gradient is maintained. An exact solution of the equations of motion describing the steady-state flow in this two-phase system is derived. Possible flow regimes and their stability in the linear approximation are studied. It is shown that in the liquid phase the thermocapillary flow can be completely stopped by the gas flow at the expense of the interaction between mechanical stresses at the interface. The results obtained indicate the possibility of controlling thermocapillary flows and their stability by means of gas flows.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号