首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods of quartz microgravimetry (in solutions containing no copper ions) and stripping voltammetry (in copper-containing solutions) are used to study the process of anodic dissolution of thin deposits of pure Co and Ni and deposits of these metals with inclusion of copper in the potential region of copper deposition. It is shown that, under these conditions, Ni practically does not dissolve in either the sulfate or chloride-containing electrolytes, whereas Co dissolves in sulfate electrolytes at a rate that is dependent on the potential and increases with its shift into the positive region. Stability of ternary CoNiCu deposits is examined and it is demonstrated that additionally inserting Ni in the composition of a magnetic CoCu layer facilitates suppression of selective dissolution of Co.  相似文献   

2.
电结晶铜/钴纳米多层膜结构与磁性能研究   总被引:3,自引:0,他引:3  
以n型Si(111)为基底, 在硼酸镀液体系中采用双槽法电结晶制备Cu/Co纳米多层膜, 确定了工艺条件. 用扫描电镜(SEM)和X射线衍射(XRD)对纳米多层膜的结构和形貌进行了表征, 显示多层膜具有良好周期性和超晶格结构. 并用物性测量系统PPMS测试了不同结构 Cu/Co纳米多层膜的磁性能. 磁滞回线表明: 不同周期数的纳米多层膜其矫顽力均较小. 巨磁阻(GMR)性能与纳米多层膜结构有关. GMR值随Co磁性层厚度增长先增大后减小, 有一极值; 随着Cu非磁性层厚度的增加GMR值发生周期性的振荡; 随周期数N的增大, GMR值先增大, 在N为60时达到了90%, 随着N的继续增加而减小, 当达到80周期时, GMR值趋于稳定.  相似文献   

3.
The structure characteristics and the electrochemical behavior of Pt(Cu)/C electrocatalysts synthesized by consecutive deposition of copper and platinum on carbon-support microparticles is studied. The stability and catalytic activity of Pt(Cu)/C materials in reactions of oxygen electroreduction and methanol electrooxidation are assessed and compared with analogous characteristics of a commercial Pt/C material. It is shown that combining the method of galvanic displacement of Cu by Pt with the additional chemical deposition of Pt favors optimization of the structure and functional characteristics of Pt(Cu)/C electrocatalysts. The effect of thermal treatment on the characteristics and properties of electrocatalysts is studied and the optimal conditions of such pretreatment are revealed.  相似文献   

4.
超晶格多层膜的电化学制备、表征及其GMR特性的研究   总被引:7,自引:0,他引:7  
以半导体Si为衬底,电化学沉积Cu/Co超晶格多层膜,用SEM表征多层膜的断面形貌.XRD研究表明,多层膜的调制波长为20~160 nm时,膜层间发生外延生长.随着调制波长的减小,外延生长对膜层结构的影响越来越明显.当调制波长小于20 nm时,在XRD强衍射峰的两侧出现卫星峰,表明多层膜形成超晶格结构.根据卫星峰位置计算的调制波长与由法拉第定律估算的结果非常接近.多层膜的巨磁电阻(GMR)性能随多层膜周期数的增加而增大;当周期数大于300时,GMR性能基本上不再随周期数变化,说明基体的导电性质对GMR的影响可以忽略.  相似文献   

5.
扫描隧道显微技术 ( STM)不但可在小至原子分辩的尺度上现场研究电极表面及其结构变化 ,还能对电极表面进行纳米尺度上的加工、修饰 [1~ 3] .由于 STM探针与被研究样品的表面仅相距~ 1 nm,探针附近区域电极 /溶液界面的结构和性质将不可避免地受到影响 .尽管人们已认识到针尖与样品表面不可忽视的相互作用 ,但利用该相互作用诱导纳米区域电化学反应的研究还很少 ,仅有半导体 Si[4~ 7] 和 Ga As[8] 表面基于强电场诱导或空穴注入的 STM针尖诱导纳米刻蚀等的报道 .本文在控制铜的电位负于其热力学平衡电位 ( Nernst电位 )的情况下 ,…  相似文献   

6.
The interaction between the Co sulfide coating formed on a glassy carbon electrode and Cu(I)-ammonia complexes solution was investigated by cyclic voltammetry in 0.1 M KClO4, 0.1 M NaOH and 0.05 M H2SO4 solutions. It was determined that, after treating the cobalt sulfide coating formed by two deposition cycles with Cu(I)-ammonia complexes (0.4 M, pH 8.8–9.0, τ=180 s, T=25±1°C), an exchange occurs between the coating components and Cu(I). Copper(I) substitutes 75% of the Co(III) compounds present in the coating (~1.81×10–7 mol cm–2) because of Cu2O (1.36×10–7 mol cm–2) formation. The rest of the Co(II) and Co(III) sulfide compounds are also replaced by copper with formation of Cu2– x S with a stoichiometric coefficient close to 2 (~1.9). After modifying the cobalt sulfide coatings with Cu(I) ions, the total amount of metal (Co+Cu) increases, owing to the sorption of Cu(I) compounds. In addition, the number of deposition cycles decreases from 3 to 1.5 [1 cycle involves cobalt sulfide layer formation and 0.5 cycle is attributed to modifying by Cu(I) ions]. The coatings modified in the above-mentioned manner may be successfully used for plastic electrochemical metallization as Cu2– x S coatings formed by three deposition cycles. Electronic Publication  相似文献   

7.
Using in situ STM the atomic structure and the morphology of a Cu(1 1 1) surface exposed to a dilute sulfuric acid solution have been studied depending on the applied electrode potential. At anodic potentials near the onset of copper dissolution the electrode surface is reconstructed (expanded) caused by the specific adsorption of sulfate anions. The extent of the surface reconstruction strongly depends on the sulfate adsorption rate. Fast sulfate adsorption results in a mainly disordered sulfate adlayer on an unreconstructed copper surface. Conversely, slow sulfate adsorption produces a mainly reconstructed copper surface with a highly ordered sulfate/water coadsorption layer. This adsorbate structure shows an additional long-range Moiré modulation, due to a misfit between the first reconstructed and the second unreconstructed copper layer. This is verified by spectroscopy-like STM experiments, which allow the imaging not only of the adsorbate overlayer, but also of the underlying reconstructed substrate. This type of adsorbate-induced reconstruction is characterized by an expansion of the topmost copper layer. The kinetically slow process of reconstruction can be easily followed by dynamic STM measurements revealing a mass transport out of the topmost copper layer during the slow sulfate adlayer formation. Characteristically, new copper islands nucleate and grow, while the sulfate Moiré adlayer expands over the electrode surface. At cathodic electrode potentials the desorption of the sulfate adlayer is accompanied by the lifting of the surface reconstruction and the massive formation of surface defects, such as small pits and vacancy islands. A continuous cycling of the electrode potential leads to an enormous roughening of the surface morphology.  相似文献   

8.
Minimization of interface roughness of electrodeposited metallic multilayers with nanometer thick sublayers during pulse electrolysis largely depends on the choice of potential pairs and electrolyte. In this study, a systematic effort has been made to identify the different origins of less noble ferromagnetic (FM) layer dissolution during two pulse potentiostatic electrochemical deposition (ECD) of FeCoNiCu/Cu multilayers and its subsequent minimization. Detailed investigations by employing cyclic voltammetry and chronoamperometry, it was established that the FM layer dissolution not only depends on copper layer discharge potential (E Cu) but also on FM layer discharge potential (E FM) and Cu2+ concentrations. Both the cell capacitance effect and galvanic displacement reactions are accountable for corrosion of FM layer. It was found that potentials, E FM = ?2.3 V vs. SCE and E Cu = ?0.6 vs. SCE are the optimum pair for growth of FeCoNiCu/Cu multilayers with minimum dissolution of FM layer.  相似文献   

9.
Underpotential deposition studies of copper on glassy carbon   总被引:1,自引:0,他引:1  
Studies on the deposition and dissolution of copper from 0·5 M sulphuric acid solutions onto glassy carbon (GC) using potential sweep techniques indicated that an additional peak occurs at higher positive potentials than the bulk stripping peak. This peak is identified as due to the stripping of underpotential deposited (UPD) copper. Results of investigations on the effect of sweep rate, deposition potential and time of deposition on the peak characteristics of UPD and bulk deposited copper are also reported.  相似文献   

10.
利用双槽直流电沉积技术在阳极氧化铝(AAO)模板的纳米孔中获得调制波长为50 和200 nm 的Co/Cu多层纳米线, 多层纳米线的调制波长由电沉积时间控制. 运用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征纳米线的形貌, Co/Cu多层纳米线的长度约20 μm, 直径约80 nm; 用X射线衍射(XRD)研究多层线的结构; 用振动样品磁强计(VSM)测试纳米线阵列的磁性能; 利用可变磁场结合高灵敏度恒流装置研究巨磁电阻(GMR)特性. 结果表明, Co/Cu多层纳米线具有磁各向异性. 当磁场与纳米线平行和垂直时, 调制波长为50 nm的多层线的矫顽力分别为87500 和34200 A·m-1, 而调制波长为200 nm的多层线阵列的矫顽力分别为28600 和8000 A·m-1. 调制波长为50 nm的多层纳米线的磁电阻变化率高达-%, 而调制波长为200 nm的多层线未产生明显的GMR效应.  相似文献   

11.
电沉积Co-Cu颗粒膜的巨磁电阻效应   总被引:4,自引:0,他引:4  
从1988年Baibich首先在磁性Fe/Cr多层膜中发现巨磁电阻效应(GMR)以来 [1],由于GMR本身的科研价值和在磁记录、磁性传感器等方面的广泛应用前景 ,引起了人们的极大关注.继多层膜之后 ,人们在金属颗粒膜如Co Ag[2],Co Cu[3,4]等中也相继发现了巨磁电阻效应.颗粒膜是微颗粒镶嵌于薄膜中所构成的复合材料体系.原则上 ,颗粒的组成与薄膜的组成在制备条件上应互不固溶 ,因此颗粒膜区别于合金、化合物 ,属于非均匀相组成的材料.磁性颗粒膜是磁性粒子分布在非磁性金属材料薄膜中.在磁性颗粒与非…  相似文献   

12.
The surface electrochemistry of Cu(100) in 10 mM hydrobromic acid electrolyte has been studied by means of cyclic voltammetry and in situ STM. In the potential range between the onset of the anodic copper dissolution at positive and the hydrogen evolution at negative electrode potentials, the CV of Cu(100) in 10 mM HBr is characterized only by the double-layer charge. Within this potential regime a highly ordered (√2×√2)R45°-superstructure is seen in the STM experiments assigned to specifically adsorbed bromide anions. No desorption of the bromide adlayer has been found in these STM experiments even at extremely negative potentials at the onset of hydrogen evolution. Therefore the bromide desorption potential is concluded to lie within the potential regime of massive hydrogen evolution at even more negative potentials. Adsorbed bromide induces a drastic restructuring and faceting of the surface topography depending on the applied potential. The driving force of this process is the formation of thermodynamically favored copper steps aligned parallel to close packed 100 directions of the bromide adsorbate. Dynamic processes like copper dissolution and deposition are also strongly influenced by the geometry of the (√2×√2)R45° bromide adlayer. Corrosion as well as deposition of copper material follows the close packed 100 directions of the bromide adsorbate. For moderate reaction rates an additional anisotropy between the [001]- and [010]-direction is observed due to the nonequivalence of two different kinds of bromide stabilized copper steps. The origin of these two kinds of steps is the phase relation of close packed adsorbate rows of adjacent terraces. The deposition of copper material does not only start at the lower but unusually, also at the upper sites of step edges leading to the formation of microfacets. Not only the growth of monoatomically high islands is observed but also a double-layer and multilayer growth of copper.  相似文献   

13.
Polypyrrole (PPy) coatings were synthesized on copper by electrochemical polymerization of pyrrole monomer in aqueous acidic and basic solutions by cyclic voltammetry. The coatings were characterized with CV, UV-visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) techniques. The corrosion protection aspects of PPy coatings have been investigated using the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The potentiodynamic polarization measurements show that the PPy coating has ability to protect the copper against corrosion. It was concluded that a complete corrosion protective PPy film could not be obtained through direct electro-oxidation procedure. This may be due to copper dissolution in the monomer oxidation potential range.  相似文献   

14.
采用双槽控电位法在阳极氧化铝(AAO)模板中制备了有序均一的[NiFe/Cu/Co/Cu]n多层纳米线阵列,并在不同温度下进行了热处理.利用X射线衍射(XRD)对热处理前后多层线的晶体结构进行了测试.考察了不同退火温度对多层线矫顽力、剩磁比、巨磁电阻(GMR)效应、磁灵敏度的影响.随热处理温度升高,多层纳米线中磁性微晶晶型取向越来越明显,晶体结构更均匀;多层纳米线的矫顽力和剩磁比先增大后减小.300°C下多层纳米线矫顽力达到最大值,GMR最大值可达59%,对应的磁电阻灵敏度(SV)为0.233%Oe-1.  相似文献   

15.
在流动的高浓度硫酸铜酸性溶液中, 研究了H2SO4浓度、 温度和CuSO4浓度对Cu/Cu2+沉积型电极在石墨基体上电化学性能的影响. 结果表明, 沉积型铜电极反应受控于阴极沉积过程, 室温下动力学过程较慢, 但铜沉积致密, 不易形成枝晶和海绵状铜. 适当提高H2SO4和CuSO4浓度及反应温度可降低铜沉积的极化, 改善其动力学特征; 但Cu离子的溶解度受限于H2SO4浓度, CuSO4浓度提升空间有限. 优化电解液组成为2.5 mol/L H2SO4+0.7 mol/L CuSO4, 反应温度45 ℃. 在此条件下, 铜在石墨基体上沉积/溶解的交换电流密度提高1个数量级, 具有良好的动力学特征, 单电极充放电电压差降低近50%, 能量效率超过80%.  相似文献   

16.
The electrolytic deposition of nanosized Cu/Ni-Cu multilayer coatings on a paraffin-impregnated graphite substrate was performed from an electrolyte consisting of sulphate salts of the above metals and a complex-forming agent, sodium citrate. The multilayer Cu/Ni-Cu coatings were prepared using the potentiostatic method, in which the potential was alternately pulsed between the reduction potentials of the components. Suitable deposition potentials were selected from the polarisation curves. The presence of the thin films was confirmed by atomic absorption spectroscopy (after dissolution) and by optical microscopy. The resulting images show a layered structure of Cu/Ni-Cu coatings formed by Cu, Ni and/or Ni-Cu layers.  相似文献   

17.
A method is described to detect Cu(II) and Cu(I) added as bromide simultaneously in styrene solution containing tetrahexylammoniumperchloraat (THAP) as supporting electrolyte. It was found that Cu(II) and Cu(I) behave similarly in styrene and in aqueous solution. Reduction of Cu(II) and Cu(I) to metallic copper, as well as oxidation of Cu(I) to Cu(II) and the dissolution of a deposited metallic copper layer are observed. Ohmic drop problems were circumvented by adding THAP to the styrene solution and using ultramicro electrodes. The simultaneous detection of Cu(II) and Cu(I) is based on recording a cyclic voltammetric curve in a mixture of these compounds and calculating their concentration from the cathodic limiting current obtained at −0.80 V vs. RE and the anodic stripping peak corresponding to the dissolution of metallic copper. A detection limit of 2.0×10−4 mol l−1 was obtained for both Cu(II) and Cu(I) and reproducible results were obtained concerning sensitivity and stability of the calibration curves.  相似文献   

18.
The oxidant effect on the codeposition of two metals in a porous electrode (PE) was studied experimentally and by numerical calculations. The presence of an oxidant in a solution always leads to degradation of the dynamics and final characteristics of the target process, namely, to a decrease in the current efficiency, the final mass, and the average rate of metal deposition and to a less uniform distribution of metals in the PE. The effect depends on the PE operating conditions and involves less uniform potential distribution in PE and anodic dissolution of metals. The former component of the effect dominates when the concentrations of the metal ions and oxidant are comparable. A considerable deceleration of silver deposition in the presence of an oxidant and anodic dissolution of copper at the first stage of the electrolysis of the second and subsequent portions of solution were confirmed experimentally using as an example Ag and Cu extraction from an alkaline thiosulfate solution in the presence of a Fe3+ trilonate complex used as an oxidant.  相似文献   

19.
In core–shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core–shell Ag–Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag–Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag–Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.  相似文献   

20.
A cementation-like process taking place under potential control and introduced in this work as a "potential-controlled displacement" (PCD) is developed as a new method for processing of nanoporous Ag structures with controlled roughness (porosity) length scales. Most of the development work is done in a deoxygenated electrolyte containing 1 x 10(-3) M AgClO(4 )+ 5 x 10(-2) M CuSO(4) + 1 x 10(-1) M HClO(4) using a copper rotating disk electrode at 50 rpm. At this electrolyte concentration, the Ag deposition is under diffusion limitations whereas the Cu dissolution displays a typical Butler-Volmer anodic behavior. Thus, a careful choice of the operational current density enables strict control of the ratio between the dissolving and depositing metals as ascertained independently by atomic absorption spectrometry (AAS). The roughness length scale of the resulting surfaces is controlled by a careful selection of the current density applied. The highest surface area and finest morphology is obtained when the atomic ratio of Ag deposition and Cu dissolution becomes 1:1. Preseeding of uniform Ag clusters on the Cu surface made by pulse plating of Ag along with complementary plating and stripping of Pb monolayer is found to yield finer length scale resulting in up to a 67% higher surface area. An electrochemical technique using as a reference value the charge of an underpotentially deposited Pb layer on a flat Ag surface is used for measuring the real surface area. Scanning electron microscopy (SEM) studies are conducted to examine and characterize the deposit morphology of Ag grown by PCD on Cu substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号