首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
锂电池阴极材料多硫代聚苯撑的制备及电化学性能   总被引:3,自引:0,他引:3  
采用阴极材料结构改性的新方法,即以导电的聚苯撑作为骨架,将多硫链以侧链形式连接在主链上.通过苯的聚合、聚苯撑氯代,氯代聚苯撑(PPPCl)的硫代三步合成了多硫代聚苯撑(PPPS),产物结构经13CNMR谱、IR光谱、Raman光谱和元素分析进行了鉴定,其中IR谱中461和615cm-1及Raman谱中470和666cm-1峰分别表明存在S-S键和C-S键,结合其它鉴定结果,证明终产物为多硫代聚苯撑.组装成电池进行充放电性能测试表明,材料在80mA/g的电流密度下放电,比容量为987mA·h/g;在400mA/g下放电,比容量为776mA·h/g.在这两种电流密度下的利用率分别为83.5%和65.7%,具有较高的利用率和较好的大电流性能.在400mA/g的电流密度下放电时,经过25个循环的容量为307mA·h/g.  相似文献   

2.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

3.
以P123为结构导向剂,采用溶胶-凝胶法结合冷冻干燥技术制备了0/1/2维混合纳米形貌的正交相V2O5电极活性材料.利用XRD和SEM表征了样品的结构和形貌,通过循环伏安法、恒流充放电和交流阻抗谱测试研究了样品的储锂性能.结果显示,这种0/1/2维混合纳米形貌V2O5具有较高的储锂容量、优异的电化学循环稳定性和出色的大倍率充放电性能,在1 A/g电流密度下循环500次后放电比容量稳定在117.5 mA·h/g,容量保持率为94.4%,在5 A/g大电流密度下,其放电比容量仍保持在88.2 mA·h/g,性能明显优于未添加P123制备的2D片状V2O5材料.  相似文献   

4.
通过缩合聚合反应制备了两种热稳定性高、结晶性好和比表面积大的共价有机骨架(COF-1, COF-2)材料.将它们作为锂离子电池(LIBs)负极材料时,均表现出较高的可逆容量(经过150次循环后,COF-1和COF-2的充电比容量分别为484和327 mA·h/g)、出色的倍率性能(2和10 A/g电流密度下, COF-1和COF-2的可逆容量分别为296, 180 mA·h/g和265, 166 mA·h/g)、超大电流密度下的工作能力(5 A/g电流密度下循环2000次,COF-1和COF-2的充电比容量分别为572和332 mA·h/g)以及极端温度下的运行性能(50和-15℃环境中循环40次后,COF-1和COF-2的充电比容量分别为2101, 218 mA·h/g和1760, 172 mA·h/g).两种COF均具有随着充放电的持续进行,电化学活性基团被激活的能力, COF-1和COF-2在不添加导电剂的情况下循环400次,充电比容量分别从23和16 mA·h/g增长到45和31 mA·h/g;通过对实验数据的分析,证明了在大电流密度以及高温环境等能使离子扩散速率加快的条件下,...  相似文献   

5.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

6.
新型锂离子电池正极材料Li0.86V0.8O2的水热合成及性质   总被引:1,自引:1,他引:0  
采用两步反应制备了新型锂离子电池正极材料Li0.86V0.8O2. 该材料具有六方层状结构, 空间群为R3m. 研究了在水热条件下溶液的碱度对于钒酸锂盐形成的影响, 在低碱度的条件下, 前驱体V2O3和LiOH·H2O并未发生反应, 只有在碱度达到2.5 mol/L时, 才能形成单相的Li0.86V0.8O2材料. X射线光电子能谱分析发现, V2p的结合能位于516.4 和523.1 eV, 分别对应于四价钒离子的V2p3/2 和V2p1/2, 这说明在Li0.86V0.8O2中V离子主要价位为+4价. 在电流密度为7.4 mA/g的充放电中, Li0.86V0.8O2初始充电容量达到163 mA·h/g, 首次放电容量也能达到113 mA·h/g, 20次循环后放电容量仍然可以达到80 mA·h/g, 表现出较好的循环性能.  相似文献   

7.
采用溶剂热反应合成了一种新型的有机盐材料芘四酮-二均苯四甲酸二酰亚胺二钾盐PTO(KPD)2. 该材料作为锂离子电池正极时, 表现出优异的循环和倍率性能. 研究结果表明, 在50 mA/g电流密度下, PTO(KPD)2的实际放电比容量达到255.8 mA·h/g; 在500 mA/g电流密度下循环800次后, 容量保持率为81.1%. PTO(KPD)2盐结构的形成提高了分子极性, 大大降低了其在电解液中的溶解度, 使得材料表现出优异的电化学性能.  相似文献   

8.
贺倩  张崇  李晓  王雪  牟攀  蒋加兴 《化学学报》2018,76(3):202-208
共轭微孔聚合物由于其高的比表面积、优良的物理化学稳定性以及沿分子链延伸的共轭结构等特点,使其在锂离子电池电极材料方面具有巨大的应用前景.本工作以四溴芘和对苯二硼酸为构建单元,通过Suzuki偶联反应合成了具有高比表面积的芘基共轭微孔聚合物PyDB,并研究了其作为锂离子电池电极材料的电化学性能.当PyDB用作锂离子电池正极材料时,在50 mA·g-1的电流密度下,放电容量达到163 mAh·g-1,即使在3000 mA·g-1的电流密度下仍具有62 mAh·g-1的可逆容量,在100 mA·g-1的电流密度下循环300次仍具有167 mAh·g-1的容量.当该聚合物用作负极材料时,在50 mA·g-1电流密度下的放电容量达到495 mAh·g-1,在200 mA·g-1的电流密度下循环300次,仍具有245 mAh·g-1的容量.PyDB优异的电化学性能主要归因于其延伸的共轭结构和高比表面积的多孔结构,大的共轭结构有利于分子链的掺杂反应和电子传导,高比表面积的多孔结构有利于提供大量的活性位点并促进离子的迁移.  相似文献   

9.
Fe2O3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。 本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe2O3。 纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。 300 ℃热处理条件下,所得样品在电流密度为200 mA/g时首次放电比容量为1360 mA·h/g,循环100次后的容量仍然达到515.6 mA·h/g;相比之下,450和800 ℃热处理所得样品100次循环后,比容量分别为247.6和206.7 mA·h/g。 微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe2O3负极材料循环性能差的问题提供了思路。  相似文献   

10.
以Ni1/3Co1/3Mn1/3(OH)2(2)和Li2CO3为原料,在空气气氛中,经过高温热处理工艺制备了高结晶度的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2(1)。正交试验确定最佳工艺条件为:2 0.3 mol,n(Li):n(2)=1.2,于950℃反应13 h。电化学性能研究结果表明,在2.7 V~4.6 V,电流密度16 mA.g-1时,1的首次放电比容量为203.4 mAh.g-1;经16 mA.g-1循环2次,32 mA.g-1循环9次,80 mA.g-1循环20次后放电比容量为164.1 mAh.g-1。  相似文献   

11.
采用喷雾干燥法合成了LiNi0.5-xAl2xMn1.5-xO4(0≤2x≤0.15)正极材料,研究Al掺杂对LiNi0.5Mn1.5O4材料结构与电化学性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、傅里叶红外光谱(FTIR)、循环伏安(CV)和充放电测试等手段对其结构及电化学性能进行表征.结果表明,Al取代Ni和Mn使材料的晶体结构发生了转变,空间群由P4332转变为Fd3m,同时增大了锂离子的扩散速率,提高了材料的倍率性能.在室温下,LiNi0.4 5Al0.1Mn1.45O4表现了最好的倍率性能,当放电电流为0.5 C时,放电容量为126 mA.h/g,当放电电流增加到5 C时,放电容量为109 mA.h/g,保持率达到了87%.此外,Al取代Ni和Mn有效降低了材料在高温下的Mn溶解量,从而有效改善了材料在高温大倍率下的循环性能.LiNi0.45Al0.1Mn1.45O4材料在50℃,倍率为3 C时,放电容量为121.7mA.h/g,循环50次后,仍可保留初始容量的94%.  相似文献   

12.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

13.
电解液流速对锌镍单液流电池性能的影响   总被引:1,自引:0,他引:1  
通过电化学测试、扫描电子显微镜观察和X射线衍射分析研究了电解液流速、电流密度和锌沉积面容量三者关系及对锌镍单液流电池充放电性能和负极锌沉积形貌的影响. 结果表明,锌沉积面容量是影响锌镍单液流电池充放电效率和负极锌沉积形貌的最主要因素,电解液流速不宜过高或过低. 随着锌沉积面容量的增大,电池的充放电效率和循环稳定性对电流密度的变化更为敏感,适宜的电解液流速范围变窄. 锌沉积面容量在25 mA·h/cm2以上,锌沉积皆呈海绵状. 在较低锌沉积面容量下,电解液流速也较低时,海绵锌沉积较为均匀致密. 而在高的锌沉积面容量下,海绵状锌沉积的团簇和颗粒变大,不均匀性加重,仅在适中的电解液流速(7.1 L/min)下,锌沉积部分致密规整,电池具有较好的充放电性能.  相似文献   

14.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

15.
马诗瑶  杜慧  耿闯  王扬  庞琳瀚  赵娜  刘筱  郭永泰  曲江英 《应用化学》2016,33(11):1316-1321
采用废弃蟹壳为碳源,KOH为活化剂原位制备了氮/氧共掺杂多孔炭,并研究其作为电极材料在超级电容器中的应用。 固定蟹壳与KOH的质量比为5:3,考察了煅烧温度对所得炭材料产率、孔结构和氮氧含量的影响。 结果表明,蟹壳基炭材料的孔结构和氮/氧含量可通过改变煅烧温度调变。 随着煅烧温度从500 ℃上升至700 ℃,多孔炭的比表面积和孔体积逐渐增大,而氮/氧含量随温度升高则降低。 采用循环伏安和恒流充放电对所得材料的电化学性能进行测试。 结果表明,所得多孔炭的电化学性能取决于其孔结构与氮/氧表面性质的协同作用,其中煅烧温度为600 ℃所得的多孔炭比表面积为612 m2/g,氮和氧含量分别为3.53%和32.8%,在50 mA/g的电流密度下比电容达到310 F/g,循环1000次比电容仍然保持95%以上,展现出良好的电化学性能。  相似文献   

16.
Polyimides with high capacity, fast kinetics, abundant resource, and structural diversity offer an exhilarating opportunity for developing sustainable rechargeable batteries. Herein, a series of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-based polyimides were successfully crafted through a facile and eco-friendly hydrothermal synthesis route. The microstructure and lithium storage performance of polyimides were tailored by regulating diamine linkers between NTCDA units. Interestingly, the moderate increased length of flexible diamine units with ethylenediamine and diaminobutane can stabilize the polymer skeleton. This leads to the formation of honeycomb-like porous structures with a sufficient exposure of active carbonyl groups, thereby achieving a large capacity and high rate capability. Therefore, polyimides derived from ethylenediamine and diaminobutane show larger reversible capacities (123 and 113.5 mA h/g at 50 mA/g, respectively) and better rate capabilities with capacity retentions of up to 50% when the current increased from 50 to 2000 mA/g. This work would provide new insights into macromolecular engineering of polymers for advanced electrode materials.  相似文献   

17.
以Ca3N2为前驱体,用高温热解法制备了2D层状结构Ca2N 并用X射线和扫描电镜对Ca2N的组成、结构和形貌进行了表征。 作为钠离子电池新型负极材料,在50 mA/g电流密度充放电,首次放电比容量可达584 mA·h/g,可逆比容量达180 mA·h/g。在2000 mA/g大电流密度下,仍有70 mA·h/g。  相似文献   

18.
Silicon/carbon microrods are co-deposited on copper substrate and graphite spheres surface using dimethyl dichlorosilance as carbon and silicon precursor. The obtained composites are characterized by X-ray diffraction and scanning electron microscopy. The experimental results show that silicon/carbon microrods deposited on the copper substrate, whose diameter is about 500 nm, are accumulated into sisallike morphology, those deposited on the graphite spheres surface form hedgehog-like feature, whose diameter is about 200 nm and whose top is like cauliflower. When current density of 50 mA/g is applied, charge capacity of silicon/carbon microrods is 1492 mA h/g (deposited on copper substrate) and 693 mA h/g (deposited on the graphite spheres surface). Moreover, silicon/carbon microrods deposited on the graphite spehres and copper substrate respectively deliver the capacity of 592, 985 mA h/g, and display no capacity decay at all after the 20 cycles, when cycled under current density of 500 mA/g.  相似文献   

19.
We demonstrate the high-rate capability of lithium ion insertion-deinsertion reactions in carbon nanofibers (CNFs). The morphology of CNFs with structural and surface defects, due to the mixed features of disordered and graphitic carbon, plays an important role in both the enhancement of the lithium ion storage and the rate-determining reactions during the topotactic process. The reversible specific capacity of the CNFs at a 0.1 C rate was 461 mA x h/g. The most promising property, which is expected to overcome the hurdles of lithium batteries for high-power applications, is that they deliver considerably high specific capacity even at a very high charge-discharge current, i.e., at a cycling rate of 10 C the reversible capacity is around 170 mA x h/g with a 95% Coulombic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号