首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100 μm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20–110 V in Vp–p) and frequency (40–65 kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10 μmol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available.  相似文献   

2.
Analytical potentialities of a chip-based CE in determination of ammonium in wastewaters were investigated. CZE with the electric field and/or ITP sample stacking was performed on a column-coupling (CC) chip with integrated conductivity detectors. Acetate background electrolytes (pH ~3) including 18-crown-6-ether (18-crown-6) and tartaric acid were developed to reach rapid (in 7-8 min) CZE and ITP-CZE resolutions of ammonium from other cations (sodium, potassium, calcium and magnesium) present in wastewater samples. Under preferred working conditions (suppressed hydrodynamic flow (HDF) and EOF on the column-coupling chip), both the employed methods did provide very good repeatabilities of the migration (RSD of 0.2-0.8% for the migration time) and quantitative (RSD of 0.3-4.9% for the peak area) parameters in the model and wastewater samples. Using a 900-nL sample injection volume, LOD for ammonium were obtained at 20 and 40 μg/L concentrations in CZE and ITP-CZE separations, respectively. Very good agreements of the CZE and ITP-CZE determinations of ammonium in six untreated wastewater samples (only filtration and dilution) with the results obtained by a reference spectrometric method indicate a very good accuracy of both the CE methods presented.  相似文献   

3.
CE with capacitively coupled contactless detection (C4D) was used to determine 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH). The C4D response to 3-MH was studied in a BGE consisting of 500 mM acetic acid and ammonia at varying concentration and the results were compared with the theory. Complete separation of a model mixture of 3-MH, 1-MH, and histidine (His) was attained in two optimized BGEs, one containing 500 mM HAc, 20 mM NH4OH, and 0.1 % m/v hydroxyethylcellulose (HEC), pH 3.4 (I) and the other consisting of 100 mM morpholinoethanesulfonic acid (MES), 25 mM LiOH, and 0.1 % m/v HEC, pH 5.5 (II). These optimized BGEs were tested in CE/C4D analyses of urine. Promising results were obtained for separation and determination of 3-MH, 1-MH, and His on a silicon microchip, using aluminum strips as the C4D electrodes; the three analytes were baseline-separated within less than 30 s with a separation channel effective length of 38 mm. The LOD were satisfactory and amounted to 26.4 microM for 3-MH and 18.3 microM for 1-MH.  相似文献   

4.
Nearly all analyses by capillary electrophoresis (CE) are performed using optical detection, utilizing either absorbance or (laser-induced) fluorescence. Though adequate for many analytical problems, in a large number of cases, e.g., involving non-UV-absorbing compounds, these optical detection methods fall short. Indirect optical detection can then still provide an acceptable means of detection, however, with a strongly reduced sensitivity. During the past few years, contactless conductivity detection (CCD) has been presented as a valuable extension to optical detection techniques. It has been demonstrated that with CCD detection limits comparable, or even superior, to (indirect) optical detection can be obtained. Additionally, construction of the CCD around the CE capillary is straightforward and robust operation is easily obtained. Unfortunately, in the literature a large variety of designs and operating conditions for CCD were described. In this contribution, several important parameters of CCD are identified and their influence on, e.g., detectability and peak shape is described. An optimized setup based on a well-defined detection cell with three detection electrodes is presented. Additionally, simple and commercially available read-out electronics are described. The performance of the CCD-CE system was demonstrated for the analysis of peptides. Detection limits at the microM level were obtained in combination with good peak shapes and an overall good performance and stability.  相似文献   

5.
Zemann AJ 《Electrophoresis》2003,24(12-13):2125-2137
Capacitively coupled contactless conductivity detection (C(4)D) has become an accepted detection method in capillary electrophoresis (CE) for a variety of analytes. Advantages of this technique over optical detection modes and galvanic contact conductivity detection include great flexibility in capillary handling and rather simple mechanical parts and electronics, as it can be performed in an on-capillary mode. Furthermore, the detection principle can be used with capillaries made of other materials than fused silica (PEEK, Teflon), with chip-based separation technologies, or with capillaries having very small inner diameters. This review presents a discussion of the published literature on C(4)D for CE and capillary electrochromatography.  相似文献   

6.
Recent applications of affinity interactions in capillary electrophoresis   总被引:1,自引:0,他引:1  
Systems biology depends on a comprehensive assignment and characterization of the interactions of proteins and polypeptides (functional proteomics) and of other classes of biomolecules in a given organism. High-capacity screening methods are in place for ligand capture and interaction screening, but a detailed dynamic characterization of molecular interactions under physiological conditions in efficiently separated mixtures with minimal sample consumption is presently provided only by electrophoretic interaction analysis in capillaries, affinity CE (ACE). This has been realized in different fields of biology and analytical chemistry, and the resulting advances and uses of ACE during the last 2.5 years are covered in this review. Dealing with anything from small divalent metal ions to large supramolecular assemblies, the applications of ACE span from low-affinity binding of broad specificity being exploited in optimizing selectivity, e.g., in enantiomer analysis to miniaturized affinity technologies, e.g., for fast processing immunoassay. Also, approaches that provide detailed quantitative characterization of analyte-ligand interaction for drug, immunoassay, and aptamer development are increasingly important, but various approaches to ACE are more and more generally applied in biological research. In addition, the present overview emphasizes that distinct challenges regarding sensitivity, parallel processing, information-rich detection, interfacing with MS, analyte recovery, and preparative capabilities remain. This will be addressed by future technological improvements that will ensure continuing new applications of ACE in the years to come.  相似文献   

7.
Sung WC  Chen SH 《Electrophoresis》2001,22(19):4244-4248
This article reviews recent capillary electrophoresis (CE)-based assays which were published for pharmacokinetic studies. Both the advantages and disadvantages of these CE-based assays are discussed based on their feasibility and the significance towards the better understanding of pharmacokinetics. In addition, as a future outlook, novel assays such as immunoaffinity CE and chip-based CE for analyzing drugs in biological fluids are summarized in view of their potential for pharmacokinetic applications.  相似文献   

8.
Lin CC  Li YT  Chen SH 《Electrophoresis》2003,24(22-23):4106-4115
This review is a continuation of the previous reviews (Electrophoresis 1999, 20, 3259-3268; Electrophoresis 2001, 22, 4244-4248) to update the recent publications from 2001 to 2003 on pharmacokinetic studies using capillary electrophoresis (CE). During this period of time, CE remains as a unique analytical method for some studies, which would otherwise be limited by many factors, such as the sample volume, detection sensitivity, or separation power. It is particularly noticeable that the separation of chiral drugs in biological sample and the use of solid-phase extraction (SPE) as a simple and convenient means of sample preparation appear to become popular for CE-based assays. The use of CE for assessing complete pharmacokinetic information, however, did not show a significant growth during this period of time. In order to provide a broad range of view on how biological samples are analyzed by CE, this review will cover publications during the past two years on the use of CE for the analysis of drugs in biological fluids for general pharmacokinetic applications including drug monitoring and bioavailability studies.  相似文献   

9.
叶能胜  李建  谷学新 《色谱》2013,31(4):352-354
由于石墨烯类材料具有独特的物理化学性质,因而在生命分析、化学分析等领域得到了广泛的应用。本文结合国内外文献对石墨烯类材料在毛细管电泳中的应用进展及相关探索研究进行了评述,包括修饰电化学检测电极、制备毛细管整体柱、修饰毛细管内壁及毛细管芯片等,并对其在毛细管电泳中的应用方向进行了展望。  相似文献   

10.
11.
Recent advances in electrochemical detection in capillary electrophoresis   总被引:3,自引:0,他引:3  
Baldwin RP 《Electrophoresis》2000,21(18):4017-4028
Recent advances in the design and application of electrochemical (EC) detection systems in capillary electrophoresis (CE) are reviewed, with the objective of providing the nonelectrochemist with a state-of-the-art picture of CEEC instrumentation and an overview of the principal analytes for which CEEC is best suited. The detection schemes considered here include those based both on amperometry and on potentiometry as both kinds of EC systems are being actively developed in CE and have the potential for broad application in analysis. Over the three-year period covered by this review, an important direction that CEEC has taken is the construction of more complex electrode systems beginning with the use of multiple EC electrodes and culminating with the adaptation of EC detection to microfabricated "lab-on-a-chip" analysis devices. In addition, CEEC applications have now grown to include a broad variety of inorganic, organic, and biochemical analytes and samples.  相似文献   

12.
采用微芯片毛细管电泳非接触电导检测法快速测定了盐酸洛美沙星胶囊中盐酸洛美沙星的含量。探讨了缓冲液类型、浓度,添加剂种类、浓度及分离电压、进样时间等因素对分离检测的影响。实验采用5.0mmol/L HAc(pH=2.5)+5%乙醇为缓冲溶液,分离电压3.0 kV,在1 min内实现了盐酸洛美沙星的快速分离测定。优化条件下盐酸洛美沙星的线性范围为20.0~250.0μg/mL,检出限为10.0μg/mL(S/N=3),RSD=2.0%,加标回收率为98.6%~103%。  相似文献   

13.
Tanyanyiwa J  Hauser PC 《Electrophoresis》2002,23(21):3781-3786
The detection of alkali, alkaline earth and heavy metal ions with a high-voltage capacitively coupled contactless conductivity detector (HV-C(4)D) was investigated. Eight alkali, alkaline earth metal ions and ammonium could be separated in less than 4 min with detection limits in the order of 5 x 10(-8) M. The heavy metals Mn2+, Pb2+, Cd2+ Fe2+, Zn2+, Co2+, Cu2+ and Ni2+ could also be successfully resolved with a 10 mM 2-(N-morpholino)ethanesulfonic acid/DL-histidine (MES/His)-buffer. Zn2+, Co2+, Cu2+ and Ni2+ showed an indirect response. The detection limits for the heavy metals were determined to range from about 1 to 5 microM.  相似文献   

14.
In this report, a new approach for the fast determination of hydrazine compounds (hy) in complex matrices is presented. The experimental protocol is based on poly(methylmethacrylate) (PMMA) microchip separations with contactless conductivity detection using a compact portable device, which integrates all separation and detection components. Three hy (hydrozine (Hy), methylhydrazine (MH), and 1,1-dimethylhydrazine (UDMH)) were separated within < 30 s at a separation voltage of 3.8 kV using a L(-)-histidine/2-(N-morpholinoethanesulfonic acid) (His/MES) buffer (25:50 mM, pH 5.87). The contactless conductivity detection enables detection limits for Hy, MH, and UDMH of 11.9, 35.5, and 337.8 ng/mL, respectively, with linear concentration dependence up to 10 μg/mL. In complex matrices such as soil samples or river water, interferences were eliminated by implementing ultrasound-assisted headspace single-drop microextraction of hy under strongly alkaline conditions, using an aqueous drop of His/MES buffer as the extractant phase. The incorporation of this miniaturized sample preparation step led to improved limits of detection for Hy, MH, and UDMH of 6.5, 15.3, and 11.4 ng/mL, respectively. The overall protocol demonstrates a promising approach for interfacing chip electrophoresis with real-world applications.  相似文献   

15.
氯霉素的高效毛细管电泳分离-电导检测   总被引:3,自引:2,他引:3  
在熔融石英毛细管(50μmi.d×50cm)中,以6mmol/LH3BO3 2mmol/L硼砂 体积分数0.02%TEPA(四乙烯五胺)为电泳运行介质,分离电压-15.0kV,采用毛细管电泳-电导检测法在4min内实现了氯霉素的分离检测。讨论了电渗流抑制剂的浓度、缓冲体系的组成和浓度等因素对检测结果的影响。线性检测范围为1~120mg/L,检出限为0.3mg/L。对市售氯霉素滴眼液和注射液中的氯霉素进行分析,加标回收率为93.8%~106.8%。  相似文献   

16.
高效毛细管电泳电导分离-检测亮氨酸对映体   总被引:1,自引:0,他引:1  
以未涂层融硅石英毛细管(50 cm×75μm)为分离柱,2 mmol/L NaAc+2mmol/L HAc+0.5 mmol/L Cu2+(pH 4.0)作为电泳运行液,分离电压15 kV,建立了亮氨酸对映体的高效毛细管电泳-电导分离检测的方法。对缓冲溶液的种类、浓度、分离电压、有机改性剂等因素对分离的影响进行了讨论。L-亮氨酸和D-亮氨酸的线性回归方程分别为:y=5.998ρ+40.677,y=3.605ρ+42.087。线性范围:L-亮氨酸4.0~160 mg/L;D-亮氨酸6.0~160 mg/L。检出限分别为:1.5和2.0 mg/L。  相似文献   

17.
Contactless conductivity detection is successfully demonstrated for the enantiomeric separation of basic drugs and amino acids in capillary electrophoresis (CE). Derivatization of the compounds or the addition of a visualization agent as for indirect optical detection schemes were not needed. Non-charged chiral selectors were employed, hydroxypropylated cyclodextrin (CD) for the more lipophilic basic drugs and 18-crown-6-tetracarboxylic acid (18C6H4) for the amino acids. Acidic buffer solutions based on lactic or citric acid were used. The detection limits were determined as 0.3 microM for pseudoephedrine as an example of a basic drug and were in the range from 2.5 to 20 microM for the amino acids.  相似文献   

18.
A miniaturized capacitively coupled contactless conductivity detector (mini-C(4)D) cell has been designed which is small enough to allow it to slide along the effective capillary length inside the capillary cassette of an Agilent capiillary electrophoresis system (CE) (or other CE brand of similar construction), including the possibility of positioning it close to the point of optical detection (4 cm), or even putting two such detector cells in one cassette. The cell was tested and the performance characteristics (noise, sensitivity, and peak width) were compared with those obtained with the previously used large C(4)D cell. No significant differences were observed. The mini-C(4)D was used in simultaneous separations of common cations and anions where its advantage over a larger C(4)D cell is the ability to vary the point of detection with the mini-C(4)D cell continuously at any point along the capillary length, so that the optimum apparent selectivity can be chosen. Other applications include providing a convenient second point of detection in addition to photometric detection, such as to measure accurately the linear velocity of a zone, or to allow placement of two mini-C(4)D cells in one capillary cassette simultaneously.  相似文献   

19.
Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.  相似文献   

20.
The interest in microfluidic devices has increased considerably over the past decade due to the numerous advantages of working within a miniature, microfabricated format. This review focuses on recent advances in coupling amperometric detection with microchip capillary electrophoresis (CE). Advances in electrochemical cell design, isolation of the detector from the separation field, and integration of both pre- and postseparation reaction chambers are discussed. The use of microchip CE with amperometric detection for enzyme/immunoassays, clinical and environmental assays, and the determination of neurotransmitters is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号