首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The heteroleptic and homoleptic ruthenium(II) complexes of 4'-cyano-2,2':6',2' '-terpyridine are synthesized by palladium catalyzed cyanation of the corresponding Ru(II) complexes of 4'-chloro-2,2':6',2' '-terpyridine. The introduction of the strongly electron-withdrawing cyano group into the Ru(tpy)(2)(2+) moiety dramatically changes its photophysical and redox properties as well as prolongs its room temperature excited-state lifetime.  相似文献   

3.
Liu P  Wong EL  Yuen AW  Che CM 《Organic letters》2008,10(15):3275-3278
"Iron(II) salt + 4,4',4'-trichloro-2,2':6',2'-terpyridine" is an effective catalyst for epoxidation and aziridination of alkenes and intramolecular amidation of sulfamate esters. The epoxidation of allylic-substituted cycloalkenes achieved excellent diastereoselectivities up to 90%. ESI-MS results supported the formation of iron-oxo and -imido intermediates. Derivitization of Cl 3terpy to O-PEG-OCH 3-Cl 2terpy renders the terpyridine unit to be recyclable, and the "iron(II) salt + 4,4'-dichloro-4'- O-PEG-OCH 3-2,2':6',2'-terpyridine" protocol can be reused without a significant loss of catalytic activity in the alkene epoxidation.  相似文献   

4.
5.
6.
The synthesis and structural characterization of a new trimethylplatinum(IV) iodide complex of 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine ligand L, {PtMe3IL} ( 1 ) is reported. The X-ray crystal structure shows that the terpyridine ligand L binds the platinum(IV) metal center in bidentate fashion, which is well supported by the 1H NMR spectrum of 1 . The complex 1 upon crystallization with 1,4-diiodotetrafluorobenzene (DITFB) forms the halogen bonded complex 1a ( 1· DITFB). The structural investigation shows that 1a exhibits the halogen bonding interaction in which the non-coordinated pyridyl nitrogen acts as halogen bond acceptors by forming I ··· N interaction with iodine atom of DITFB. In addition iodine atom of complex 1 also acts as weak halogen bond acceptor.  相似文献   

7.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

8.
A series of new tridentate polypyridine ligands, made of terpyridine chelating subunits connected to various substituted 2-pyrimidinyl groups, and their homoleptic and heteroleptic Ru(II) complexes have been prepared and characterized. The new metal complexes have general formulas [(R-pm-tpy)Ru(tpy)]2+ and [Ru(tpy-pm-R)2]2+ (tpy = 2,2':6',2' '-terpyridine; R-pm-tpy = 4'-(2-pyrimidinyl)-2,2':6',2' '-terpyridine with R = H, methyl, phenyl, perfluorophenyl, chloride, and cyanide). Two of the new metal complexes have also been characterized by X-ray analysis. In all the R-pm-tpy ligands, the pyrimidinyl and terpyridyl groups are coplanar, allowing an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT) excited state. The absorption spectra, redox behavior, and luminescence properties of the new Ru(II) complexes have been investigated. In particular, the photophysical properties of these species are significantly better compared to those of [Ru(tpy)2]2+ and well comparable with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical properties lie at the same time in an enhanced MLCT-MC (MC = metal centered) energy gap and in a reduced difference between the minima of the excited and ground states potential energy surfaces. The enhanced MLCT-MC energy gap leads to diminished efficiency of the thermally activated pathway for the radiationless process, whereas the similarity in ground and excited-state geometries causes reduced Franck Condon factors for the direct radiationless decay from the MLCT state to the ground state of the new complexes in comparison with [Ru(tpy)2]2+ and similar species.  相似文献   

9.
A series of N-alkylated derivatives of [Ru(pytpy)(2)]2+ (pytpy=4'-(4-pyridyl)-2,2':6',2'-terpyridine) has been synthesised and characterised. These include both model and functionalised complexes that complement previously reported iron(II) analogues. Reaction of [Ru(pytpy)(2)]2+ with bis[4-(bromomethyl)phenyl]methane leads to the formation of a [2+2] ruthenamacrocycle. Related ferramacrocycles could not be accessed by this route, and instead were prepared in two steps by first reacting bis[4-(bromomethyl)phenyl]methane or 4,4'-bis(bromomethyl)biphenyl with two equivalents of pytpy, and then treating the resulting bis(N-alkylated) product with iron(II) salts.  相似文献   

10.
We describe the synthesis and characterization of 4'-tert-butyl-2,2':6',2'-terpyridine (4'-(t)Butpy, 1), a convergent tpy ligand that exhibits both a sterically demanding and solubilizing 4'-substituent. In the solid state, molecules of 1 pack with alternating tpy and tert-butyl domains, and the bulky alkyl substituents prevent the molecules from engaging in the face-to-face π-interactions which are typical of simple tpy ligands. Instead, the predominant packing forces involve CH···N hydrogen bonds and weak CH···π contacts. The syntheses of the homoleptic complexes [M(1)(2)][PF(6)](2) (M = Fe, Co, Zn and Ru) and the heteroleptic [Ru(tpy)(1)][PF(6)](2) are described. The complexes have been fully characterized in solution, including the (1)H NMR spectroscopic characterization of the paramagnetic [Co(1)(2)][PF(6)](2). Cyclic voltammetric data are consistent with the tert-butyl substituent being slightly electron releasing. The single crystal structures of [Zn(1)(2)][PF(6)](2) and [Ru(1)(2)][PF(6)](2) have been determined; the compounds are essentially isomorphous. The packing of the cations is such that the tert-butyl substituents are accommodated in pockets between the tpy domains of adjacent cations, and as a consequence, the {M(tpy)(2)}-embrace that is a ubiquitous feature of many related structures is not observed.  相似文献   

11.
An electroactive luminescent switch has been synthesized that comprises a hydroquinone-functionalized 2,2':6',2'-terpyridine ligand coordinated to a ruthenium(II) (4'-phenylethynyl-2,2':6',2'-terpyridine) fragment. The assembly is sufficiently rigid that the hydroquinone-chromophore distance is fixed. Excitation of the complex via the characteristic metal-to-ligand charge-transfer (MLCT) absorption band produces an excited triplet state in which the promoted electron is localized on the terpyridine ligand bearing the acetylenic group. The triplet lifetime in butyronitrile solution at room temperature is 46 +/- 3 ns but increases markedly at lower temperature. Oxidation of the hydroquinone to the corresponding benzoquinone switches on an electron-transfer process whereby the MLCT triplet donates an electron to the quinone. This reaction reduces the triplet lifetime to 190 +/- 12 ps and essentially extinguishes emission. The rate of electron transfer depends on temperature in line with classical Marcus theory, allowing calculation of the electronic coupling matrix element and the reorganization energy as being 22 cm(-1) and 0.84 eV, respectively. The switching behavior can be monitored using luminescence spectroelectrochemistry. The on/off level is set by temperature and increases as the temperature is lowered.  相似文献   

12.
This paper focuses on DNA-binding interactions exhibited by Pt(dma-T)CN(+), where dma-T denotes 4'-dimethylamino-2,2':6',2'-terpyridine, and includes complementary studies of the corresponding pyrr-T complex, where pyrr-T denotes 4'-(N-pyrrolidinyl)-2,2':6',2'-terpyridine. The chromophores are useful for understanding the interesting and rather intricate DNA-binding interactions exhibited by these and related systems. One reason is that the terpyridine ligands employed provide intense visible absorption and enhanced photoluminescence signals. Incorporating cyanide as a coligand further aids analysis by suppressing covalent binding. Physical methods utilized include X-ray crystallography for structures of the individual inorganic complexes. Viscometry as well as spectral studies of the absorbance, emission, and circular dichroism (CD) yield information about interactions with a variety of DNA hosts. Although there is no sign of covalent binding under the conditions used, most hosts exhibit two phases of uptake. Under conditions of high loading (low base-pair-to-platinum ratios), the dma-T complex preferentially binds externally and aggregates on the surface of the host, except for the comparatively rigid host [poly(dG-dC)]2. Characteristic signs of the aggregated form include a bisignate CD signal in the charge-transfer region of the spectrum and strongly bathochromically shifted emission. When excess DNA is present, however, the complex shifts to intercalative binding, preferentially next to G[triple bond]C base pairs if available. Once the complex internalizes into DNA it becomes virtually immune to quenching by O2 or solvent, and the emission lifetime extends to 11 micros when [poly(dI-dC)]2 is the host. On the other hand, the host itself becomes a potent quenching agent when G[triple bond]C base pairs are present because of the reducing strength of guanine residues.  相似文献   

13.
A series of binuclear ruthenium(II)-bis(2,2':6',2' '-terpyridine) complexes has been prepared around a central biphenylene unit equipped with a strap of variable length. Partial oxidation forms the mixed-valence complex that displays both ligand-to-metal, charge-transfer, and intervalence charge-transfer (IVCT) transitions in the near-IR region. On the basis of Hush theory, the electronic coupling matrix element for interaction between the metal centers decreases with increasing length of the tethering strap. This effect arises because the strap modulates the torsion angle between the phenyl rings and thereby controls the extent of through-bond electronic coupling. The coupling element favors a maximum for planar geometries and a minimum for orthogonal structures, but the full impact of the torsion angle is not realized due to thermal fluctuations.  相似文献   

14.
In methanol or chloroform/methanol solutions, reactions of Cltpy or MeOtpy (Rtpy = 4'-R-2,2':6',2'-terpyridine) with CoX(2)·xH(2)O (X(-) = Cl(-), [OAc](-), [NO(3)](-) or [BF(4)](-)) result in the formation of equilibrium mixtures of [Co(Rtpy)(2)](2+) and [Co(Rtpy)X(2)]. A study of the solution speciation has been carried out using (1)H NMR spectroscopy, aided by the dispersion of signals in the paramagnetically shifted spectra; on going from a low- to high-spin cobalt(II) complex, proton H(6) of the tpy ligand undergoes a significant shift to higher frequency. For R = Cl and X(-) = [OAc](-), increasing the amount of CD(3)OD in the CD(3)OD/CDCl(3) solvent mixture affects both the relative proportions of [Co(Cltpy)(2)](2+) and [Co(Cltpy)(OAc)(2)] and the chemical shifts of the (1)H NMR resonances arising from [Co(Cltpy)(OAc)(2)]. When the solvent is essentially CDCl(3), the favoured species is [Co(Cltpy)(OAc)(2)]. For the 4'-methoxy-2,2':6',2'-terpyridine, the speciation of mono- and bis(terpyridine)cobalt(II) complexes depends upon the anion, solvent and ligand:Co(2+) ion ratio. The (1)H NMR spectrum of [Co(MeOtpy)(2)](2+) is virtually independent of anion and solvent. In contrast, the signals arising from [Co(MeOtpy)X(2)] depend on the anion and solvent. In the case of X(-) = [BF(4)](-), we propose that the mono(tpy) complex formed in solution is [Co(MeOtpy)L(n)](2+) (L = H(2)O or solvent, n = 1-3). The formation of mono(tpy) species has been confirmed by the solid state structures of [Co(Cltpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(NO(3)-O)(2)(OH(2))] and [Co(MeOtpy)Cl(2)]. The single crystal structure of the cobalt(III) complex [Co(Cltpy)Cl(3)]·CHCl(3) is also reported.  相似文献   

15.
Rapid intramolecular energy transfer occurs from a free-base porphyrin to an attached osmium(II) bis(2,2':6',2' '-terpyridine) complex, most likely by way of the F?rster dipole-dipole mechanism. The initially formed metal-to-ligand, charge-transfer (MLCT) excited-singlet state localized on the metal complex undergoes very fast intersystem crossing to form the corresponding triplet excited state ((3)MLCT). This latter species transfers excitation energy to the (3)pi,pi* triplet state associated with the porphyrin moiety, such that the overall effect is to catalyze intersystem crossing for the porphyrin. Interligand electron transfer (ILET) to the distal terpyridine ligand, for which there is no driving force, competes poorly with triplet energy transfer from the proximal (3)MLCT to the porphyrin. Equipping the distal ligand with an ethynylene residue provides the necessary driving force for ILET and this process now competes effectively with triplet energy transfer to the porphyrin. The rate constants for all the relevant processes have been derived from laser flash photolysis studies.  相似文献   

16.
17.
18.
19.
The photophysical properties of osmium(II) bis(2,2':6',2' '-terpyridine) have been recorded over a wide temperature range. An emission band is observed and attributed to radiative decay of the lowest-energy metal-to-ligand, charge-transfer (MLCT) triplet state. This triplet is coupled to two other triplet states that lie at higher energy. The second triplet, believed to be of MLCT character, is reached by crossing a barrier of only 640 cm(-1), but the highest-energy triplet, considered to be of metal-centered (MC) character, is separated from the lowest-energy MLCT triplet by a barrier of 3500 cm(-1). Analysis of the emission spectrum shows that both low- and high-frequency modes are involved in the decay process, while weak emission is seen from the second excited triplet state. The magnitude of the low- and high-frequency modes depends on temperature in fluid solution but not in a KBr disk. Apart from a substantial lowering of the triplet energy, the photophysical properties are relatively insensitive to the presence of an ethynylene substituent at the 4' position of each terpyridine ligand. However, the barrier to reaching the MC triplet is markedly reduced, and the vibrational modes become less sensitive to changes in temperature.  相似文献   

20.
Stille-type cross-coupling procedures are utilized in order to prepare a variety of functionalized 2,2'-bipyridines and 2,2':6',2' '-terpyridines. Such N-heterocyclic compounds are of great interest as chelating ligands for transition-metal ions in the field of supramolecular chemistry. Various mono- and disubstitued 2,2'-bipyridines were synthesized in high yields and multigram scales using a modular design principle. The terpyridines may be functionalized in one step with different substituents at the outer pyridine rings and at the 4'-position of the centered ring, leading to multifunctionalized compounds. The initially obtained methyl ester and ethyl ester groups can be simply converted into bromomethyl and hydroxymethyl groups which allow further functionalization reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号