首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.  相似文献   

2.
吴红玉  马松华  方建平 《物理学报》2010,59(10):6719-6724
利用一个投射方程和变量分离法,得到了(2+1)维Korteweg-de Vries(KdV)方程的新显式精确解.根据得到的孤立波解,构造出KdV方程的传播孤子结构.利用一个新的混沌系统研究了孤子的混沌行为。  相似文献   

3.
In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.  相似文献   

4.
This paper is to investigate a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model, which describes some situations from fluid mechanics, ocean dynamics, and plasma mechanics. By the AblowRz-Kaup-NewellSegur procedure and symbolic computation, the Lax pair of the vc-MKdV model is derived. Then, based on the aforementioned Lax pair, the Darboux transformation is constructed and a new one-soliton-like solution is obtained as weft Features of the one-soliton-like solution are analyzed and graphically discussed to illustrate the influence of the variable coefficients in the solitonlike propagation.  相似文献   

5.
In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Bäcklund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN(t) for the original diagonal one.  相似文献   

6.
The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.  相似文献   

7.
In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, includ- ing blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Kortcweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the com- plex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.  相似文献   

8.
The Korteweg-de Vries (KdV)-type equations have been seen in fluid mechanics, plasma physics and lattice dynamics, etc. This paper will address the bilinearization problem for some higher-order KdV equations. Based on the relationship between the bilinear method and Bell-polynomial scheme, with introducing an auxiliary independent variable, we will present the general bilinear forms. By virtue of the symbolic computation, one- and two-soliton solutions are derived.  相似文献   

9.
In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modifed Korteweg de Vries(MKdV)equation(which is equivalent to the Sasa-Satsuma equation)with the vanishing boundary condition.It is proved that such a numerical scheme has the second order accuracy both in space and time,and conserves the mass in the discrete level.Meanwhile,the resuling scheme is shown to be unconditionally stable via the von Nuemann analysis.In addition,an iterative method and the Thomas algorithm are used together to enhance the computational efficiency.In numerical experiments,this method is used to simulate the single-soliton propagation and two-soliton collisions in the complex MKdV equation.The numerical accuracy,mass conservation and linear stability are tested to assess the scheme's performance.  相似文献   

10.
In this paper, we put our focus on a variable-coe~cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.  相似文献   

11.
Two Darboux transformations of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawaka ( CDGKS) equation and (2+1)-dimensional modified Korteweg-de Vries (mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux trans- formations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the (2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the (2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.  相似文献   

12.
Li Li  Chaonan Duan  Fajun Yu 《Physics letters. A》2019,383(14):1578-1582
The Hirota bilinear method has been studied in a lot of local equations, but there are few of works to solve nonlocal equations by Hirota bilinear method. In this letter, we show that the nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation admits multiple complex soliton solutions. A variety of exact solutions including the single bright soliton solutions and two bright soliton solutions are derived via constructing an improved Hirota bilinear method for nonlocal complex MKdV equation. From the gauge equivalence, we can see the difference between the solution of nonlocal integrable complex MKdV equation and the solution of local complex MKdV equation.  相似文献   

13.
An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decomposition and the Darboux transformation of two (1+1)-dimensional soliton systems, some interesting explicit solutions of these soliton equations are obtained.  相似文献   

14.
Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie's first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th B?cklund transformation in the form of the determinant. Moreover, the P_sT_d(the shifted parity and delayed time reversal) symmetric exact solutions(including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.  相似文献   

15.
Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries (ABmKdV) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-mKdV equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".  相似文献   

16.
Boundary value problems for integrable nonlinear evolution PDEs, like the modified KdV equation, formulated on the half-line can be analyzed by the so-called unified transform method. For the modified KdV equation, this method yields the solution in terms of the solution of a matrix Riemann-Hilbert problem uniquely determined in terms of the initial datum q(x,0), as well as of the boundary values {q(0, t),qx(0, t),qxx(0, t)}. For the Dirichlet problem, it is necessary to characterize the unknown boundary values qx(0, t) and qxx(0, t) in terms of the given data q(x, 0) and q(0, t). It is shown here that in the particular case of a vanishing initial datum and of a sine wave as Dirichlet datum, qx(0, t) and qxx(0, t) can be computed explicitly at least up to third order in a perturbative expansion and that at least up to this order, these functions are asymptotically periodic for large t.  相似文献   

17.
张文玲  马松华  陈晶晶 《物理学报》2014,63(8):80506-080506
借助Maple符号计算软件,利用Pdccati方程(ζ′=a_0+a_1ζ+a_2ζ~2)展开法和变量分离法,得到了(2+1)维Korteweg-de Vries方程(KdV)包含q=C_1x+C_2y+C_3t+R(x,y,t)的复合波解,根据得到的孤立波解,构造出KdV方程新颖的复合波裂变和复合波湮灭等局域激发结构。  相似文献   

18.
Variable separation approach is introduced to solve the (2 1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.  相似文献   

19.
Using the relation between the mKdV equation and the KdV-mKdV equation, we derive non-singular rational solutions for the mKdV equation. The solutions are given in terms of Wronskians. Dynamics of some solutions is investigated by means of asymptotic analysis. Wave trajectories of high order rational solutions are asymptotically governed by cubic curves.  相似文献   

20.
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号