首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
η5-C5H5(CO)2FeNa reacts with the benzimide chlorides C6H5(Cl)CNR (R  CH(CH3)2, C6H5) in boiling THF to give the η1-iminoacyl complexes η5-C5H5 (CO)2Fe[η1-C(C6H5)NR]. Alternatively, the new Fe complexes [η5-C5H5(CO)FeC(C6H5)N(CH3)C(C6H5)NCH3PF6 (IV) and [η5-C5H5(CO)2FeC(C6H5)N(CH3)C(C6H5)NCH3]PF6 (V) are formed under the same conditions, if R  CH3. Hudrolysis of the CN single bond of the ligand in V, not stabilized by a chelate effects as in IV, results in the formation of [η5-C5H5(CO)2FeC(C6H5)NHCH3]PF6 (VII). Reaction of η5-C5H5(CO)2 with N-benyzylbenzimido chloride yields η5-C5H5(CO)2FeCH2C6H5 as the only isolated product.  相似文献   

2.
The interaction of C5H5Fe(CO)2I with (+)-α-methylbenzyl isocyanide yields the diastereoisomeric pair (+)- and (−)-C5H5Fe(CO)[CN-CH(CH3)- (C6H5)]I. The two diastereoisomers can be separated on the basis of their different solubilities by repeated precipitation from methylene chloride/pentane. Excluding light the complexes are configurationally stable in the solid state as well as in solution. In daylight, however, the optical rotations decrease rapidly (photoracemisation). The ORD and CD spectra (+)- and (−)-C5H5Fe(CO)[CN-CH(CH3)(C6H5)]I show pronounced Cotton effects.  相似文献   

3.
Asymmetric ditertiary stibine sulfides (C6H5)(CH3)(S)SbCH2Sb(CH3)(C6H5) and [(C6H5)(CH3)(S)Sb]2(CH2)3 have been prepared. It was found that they exist as only one of two possible diastereomers in the crystalline state. However, isomerization to the other form takes place in solution, resulting in an equilibrium mixture. A possibility of configurational lability of tertiary stibine sulfide was suggested for the first time.  相似文献   

4.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

5.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

6.
The complexes C5H5CuPR3 (R = Me, Pri), C5H5AuPR3 (R = Me, Pri), C5Me5CuPR3 (R = Me, Pri, Ph) and C5Me5AuPR3 (R = Pri, Ph) are prepared from [ClCuPR3]n or ClAuPR3 and LiC5H5 (TlC5H5) or LiC5Me5, respectively. According to the 1H and 13C NMR spectra, the cyclopentadienyl and pentamethylcyclopentadienylgold compounds are fluxional in solution. The X-ray crystal structure of C5H5AuPPr3i has been determined at ?120°C. The gold atom is in a linear arrangement (PAuC(1) = 177.0(2)°) and primarily σ-bonded to the cyclopentadienyl ring which shows a weak “slip distortion” toward a η3-mode of coordination. The complexes C5R′5AuPR3 (R′ = H, Me) and C5Me5CuPPr3i react with 1-alkynes such as C2H2, HC2Ph and HC2CO2Me to form alkinylgold and copper compounds R″C2MPR3. They have been characterized by IR, UV and NMR (1H, 13C, 31P) spectroscopy.  相似文献   

7.
A new method for the preparation of bis(perfluoroorgano) zinc compounds is described: CF3I and C6F5I react with dialkylzinc in the presence of a Lewis base quantitatively to give (CF3)2Zn and (C6F5)2Zn complexes, while the analogous reactions with C2F5I and iC3F7I do not yield the pure compounds. 1H, 19F n.m.r, i.r. and Raman spectra are presented.  相似文献   

8.
Ampoule reactions of C70 with n- and i-C3F7I were carried out at 250-310 °C. Two step HPLC separations allowed the isolation of several C70(n-C3F7)4-8 and C70(i-C3F7)4 compounds. Crystal and molecular structures of C70(n-C3F7)8-V, C70(n-C3F7)6O, C70(n-C3F7)4, and three isomers of C70(i-C3F7)4 have been determined by X-ray crystallography using synchrotron radiation. Molecular structures of the new compounds were compared with the known examples and discussed in terms of addition patterns and relative energies of their formation.  相似文献   

9.
On the Nature of the Transition Metal Carbon-σ-Bond. VIII. Reaction of 3d-Metal Halides with Thioanisolyl Lithium Reaction of CoBr2 · 2 THF with PhSCH2Li/N(CH2CH2)3N (TED) results in the formation of the thiophenolato complex LiCo(SPh)3 · TED · 3.5 THF (I) with ethylene, propylene, and small amounts of cyclopropane being liberated. The constitution of I follows from the results of the elemental analysis, the effective magnetic moment (μeff. = 4.41 B.M.), and the reaction with acids and HgCl2 to give PhSH and PhSHgCl, respectively. I could also be isolated by comparison synthesis from CoBr2 · 2 THF and LiSPh/TED. Other 3d-metal halides MXn · xTHF (M = Ti, V, Mn, Fe, Ni; X = Cl, Br) also react very easily with thioanisolyl lithium to form thiophenolato compounds.  相似文献   

10.
It is shown that electrode catalysis of substitution reactions can operate even for systems with rather slow chemical steps and, furthermore, for those which are electrochemically irreversible. A procedure is described for synthesis of Fe(CO)(PPh3)(η5-C5H5)COCH3 from Fe(CO)25-C5H5)CH3 and triphenylphosphine. A simplified mechanism for the catalytic chain, is given and discussed in terms of the structure of the reacting species.  相似文献   

11.
A new chemical oxidant [N(4-C6H4Br)3][B(C6F5)4], was prepared and used to synthesize [Fe(C5H5)2][B(C6F5)4]. The crystal structure of [Fe(C5H5)2][B(C6F5)4] was determined.  相似文献   

12.
[Rh(η5-C5H5)(C3S5)] and [Rh(η5-C5Me5)(C3S5)]2 [C3S52−=4,5-disulfanyl-1,3-dithiole-2-thionate(2-)] were prepared by reactions of [NMe4]2[C3S5] with [Rh(η5-C5H5)Cl2]2 and [Rh(η5-C5Me5)Cl2]2, respectively. Their X-ray crystal structural analyses revealed a monomeric form for the former complex and a dimeric geometry containing bridging S-Rh-S bonds for the latter in the solid state. They were reacted with bromine to afford [RhBr(L)(C3S5)] (L=η5-C5H5 and η5-C5Me5) with the Rh-Br bond and one electron-oxidation on the C3S5 ligand. ESR spectra and spin densities for these oxidized species are discussed.  相似文献   

13.
The synthesis of the tetracyclic spiro compounds 11, 12, 13, 14, 17, 18, 19 and 20 with homoproaporphine skeleton is described. Crucial intermediates are the secondary alcohols 10 and 16 . The structure of the spiro compounds is proved by transformation of 11 into the dihydronaphthalene derivative 24 and NMR.-spectroscopic studies of the latter.  相似文献   

14.
Zwitterionic titanoxanes {Cp[η5-C5H4B(C6F5)3]Ti}2O (I) and {(η5-iPrC5H4)[η5-1,3-iPrC5H3B(C6F5)3]Ti}2O (II), which contain two positively charged Ti(IV) centres in the molecule, are able to catalyse the ring-opening polymerization of -caprolactone (-CL) in toluene solution and in bulk. The process proceeds with a noticeable rate even at room temperature and accelerates strongly on raising the temperature to 60 °C. The best results have been obtained on carrying out the reaction in bulk. Under these conditions, the use of I as a catalyst (-CL:I = 1000:1) gives at 60 °C close to quantitative yield of poly--CL with the molecular mass of 197 000. An increase in the -CL:I ratio to 6000:1 increases the molecular mass of poly--CL to 530 000. Tetrahydrofuran (THF) is also polymerized under the action of I albeit with a lesser rate. However, the molecular mass of the resulting poly-THF can reach rather big values under optimal conditions (up to 217 000 at 20 °C and the THF:I ratio of 770:1). A rise in the reaction temperature from 20 to 60 °C results here to a decrease in the efficiency of the process. Titanoxane II is close to I in its catalytic activity in the -CL polymerization but it is much less active in the polymerization of THF. Propylene oxide (PO), in contrast to -CL and THF, gives with I only liquid oligomers in wide temperature and PO:I molar ratio ranges (−30 to +20 °C, PO:I = 500–2000:1). γ-Butyrolactone and 1-methyl-2-pyrrolidone are not polymerized under the action of I at room temperature. The reactions found are the first examples of catalysis of the cationic ring-opening polymerization by zwitterionic metallocenes of the group IVB metals.  相似文献   

15.
(C6F5)2Te reacts with elemental fluorine step by step to form the tellurium fluorides (C6F5)2TeF2, (C6F5)2TeF4 and (C6F11)2TeF4, which can be isolated in pure states. The intermediates (C6F11?2n)2TeF4 (n = 1,2) are detected spectroscopically. (C6F5)2TeF2 is also formed from the reaction of (C6F5)2Te with XeF2. The preparations, properties and 19F n.m.r. spectra of these new compounds are discussed, the mass and vibrational spectra are described.  相似文献   

16.
Phosphorus pentachloride reacts with BF3 · NH3 to give [Cl3P?N? PCl3][BCl4](Va). Mechanism of formation and chemical behaviour to SO2 and H2S are described, followed by a presentation and discussion of the 31P, 19F, and 11B NMR spectra of the adducts formed by P2NOCl5 and BF3, BCl3, and PF5, respectively.  相似文献   

17.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

18.
The complex C5H5(PMe3)Co(μ-CS)2CoC5H5 (I) is formed by the reaction of C5H5Co(PMe3)CS and CH2I2. The X-ray structure analysis shows an unsymmetrical non-planar Co2C2-skeleton with different Co---C bond lengths. The Co---Co distance is 239.2 pm. Compound I thus represents a new example of binuclear (18 + 16)-electron complexes in which the more electron-rich metal atom forms a donor bond to the more electron-poor counterpart. The reaction of I with ligands such as P(NMe2)3 does not lead to bridge cleavage indicating the stability of the Co(CS)2Co-framework.  相似文献   

19.
The bis(μ-dimethylphosphido)dicobalt complex [C5H5Co(μ-PMe2)]2 (II) has been prepared from Co(C5H5 and PMe2H on almost quantitative yield. It has also been made by reduction of [C5H5Co(PMe2H)3]I2 (IV) with NaH and from the reaction of [C5H5(PMe3)Co(μ-CO)2Mn(CO)C5H4Me] with PMe2H. Protonation of II with CF3CO3H in the presence of NH4PF6 produces the PF6? salt of the (μ-hydrido)dicobalt cation [(C5H5Co)2(μ-H)(μ-PMe2)2]+ (V) which reacts with aqueous NaOH to give II. Similar treatment of [C5H5Co(μ-SMe]2 with CF3CO2H/NH4PF6 leads to the formation of [(C5H5Co)2(μ-SMe)3]PF6 (VI). The nucleophilic character of complex II has also been demonstrated in the reaction with SO2, which gives [(C5H5Co)2 (μ-PMe2)2(μ-SO2)] (VII). The crystal and molecular structures of II, the corresponding bis(μ-diphenylphosphido) compound [C5H5Co(μ-PPh2)]2 (III) and the BPh4? salt of V have been determined. In both neutral complexes the Co2P2 cores are similarly puckered, as reflected in the dihedral angle between the CoP2 and P2Co′ planes of 108.1 and 105.0° for R = Me and Ph, respectively. The CoCo bond length and the PP interatomic separations are essentially identical for both dimers. The CoCo bond length in V, 2.517(1) Å, is lower than that in II, 2.542(2) Å. The only obvious structural variation between the unprotonated and the protonated species is the large difference in the degree of canting of the C5H5 rings with respect to each other. The angles between the C5(ring)-centroid and the CoCo line are ca. 150 and 167° in II and V, respectively, which reflects the influence of the bridging hydride ligand in the cationic complex.  相似文献   

20.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号