首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Budesonide (BUD) is a glucocorticoid widely used for the treatment of asthma, rhinitis, and inflammatory bowel disease. Its use in sport competitions is prohibited when administered by oral, intravenous, intramuscular, or rectal routes. However, topical preparations are not prohibited. Strategies to discriminate between legal and forbidden administrations have to be developed by doping control laboratories. For this reason, metabolism of BUD has been re-evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with different scan methods. Urine samples obtained after oral administration of 3?mg of BUD to two healthy volunteers have been analyzed for metabolite detection in free and glucuronide metabolic fractions. Structures of the metabolites have been studied by LC-MS/MS using collision induced dissociation and gas chromatography-mass spectrometry (GC/MS) in full scan mode with electron ionization. Combination of all structural information allowed the proposition of the most comprehensive picture for BUD metabolism in humans to this date. Overall, 16 metabolites including ten previously unreported compounds have been detected. The main metabolite is 16α-hydroxy-prednisolone resulting from the cleavage of the acetal group. Other metabolites without the acetal group have been identified such as those resulting from reduction of C20 carbonyl group, oxidation of the C11 hydroxyl group and reduction of the A ring. Metabolites maintaining the acetal group have also been identified, resulting from 6-hydroxylation (6α and 6β-hydroxy-budesonide), 23-hydroxylation, reduction of C6-C7, oxidation of the C11 hydroxyl group, and reduction of the C20 carbonyl group. Metabolites were mainly excreted in the free fraction. All of them were excreted in urine during the first 24?h after administration, and seven of them were still detected up to 48?h after administration for both volunteers.  相似文献   

2.
A method to quantify metabolites of 17beta-nandrolone (17betaN) in boar and horse urine has been optimized and validated. Metabolites excreted in free form were extracted at pH 9.5 with tert-butylmethylether. The aqueous phases were applied to Sep Pak C18 cartridges and conjugated steroids were eluted with methanol. After evaporation to dryness, either enzymatic hydrolysis with beta-glucuronidase from Escherichia coli or solvolysis with a mixture of ethylacetate:methanol:concentrated sulphuric acid were applied to the extract. Deconjugated steroids were then extracted at alkaline pH with tert-butylmethylether. The dried organic extracts were derivatized with MSTFA:NH4I:2-mercaptoethanol to obtain the TMS derivatives, and were subjected to analysis by gas chromatography mass spectrometry (GC/MS). The procedure was validated in boar and horse urine for the following metabolites: norandrosterone, noretiocholanolone, norepiandrosterone, 5beta-estran-3alpha, 17beta-diol, 5alpha-estran-3beta, 17beta-diol, 5alpha-estran-3beta, 17alpha-diol, 17alpha-nandrolone, 17betaN, 5(10)-estrene-3alpha, 17alpha-diol, 17alpha-estradiol and 17beta-estradiol in the different metabolic fractions. Extraction recoveries were higher than 90% for all analytes in the free fraction, and better than 80% in the glucuronide and sulphate fractions, except for 17alpha-estradiol in the glucuronide fraction (74%), and 5alpha-estran-3beta, 17alpha-diol and 17betaN in the sulphate fraction (close to 70%). Limits of quantitation ranged from 0.05 to 2.1 ng mL(-1) in the free fraction, from 0.3 to 1.7 ng mL(-1) in the glucuronide fraction, and from 0.2 to 2.6 ng mL(-1) in the sulphate fraction. Intra- and inter-assay values for precision, measured as relative standard deviation, and accuracy, measured as relative standard error, were below 15% for most of the analytes and below 25%, for the rest of analytes. The method was applied to the analysis of urine samples collected after administration of 17betaN laureate to boars and horses, and its suitability for the quantitation of the metabolites in the three fractions has been demonstrated.  相似文献   

3.
4.
17beta-Nortestosterone (17betaN) is illegally used in livestock as a growth promoter and its endogenous production has been described in some animals, such as adult boars. In this paper, the metabolism of 17betaN in boars has been studied by gas chromatography/mass spectrometry (GC/MS) in order to identify markers of the exogenous administration. Administration studies of intramuscular 17betaN laurate to male pigs were performed. Free, sulphate and glucuronide fractions of the urine samples were separated and the steroids present were quantified by GC/MS. 17betaN was detected in some pre-administration samples. After administration, 17betaN, norandrosterone, noretiocholanolone (NorE), norepiandrosterone, 5beta-estrane-3alpha,17beta-diol and 5alpha-estrane-3beta,17beta-diol were detected in different fractions, being the most important metabolites, 17betaN excreted as a sulphate and free NorE. Samples collected in routine controls were also analyzed by GC/MS to identify endogenous compounds. 17betaN, norandrostenedione and estrone were detected in almost all the samples. No other 17betaN metabolites were detected. According to these results, the detection by GC/MS of some of the 17betaN metabolites described above, different from 17betaN, could be indicative of the exogenous administration of 17betaN to boars.  相似文献   

5.
A high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry method was established to detect as many constituents in rat biological fluids as possible after oral administration of Shuanghua Baihe tablets (SBT). An Agilent Poroshell 120 EC‐C18 column was adopted to separate the samples, and mass spectra were acquired in positive and negative modes. First, the fingerprints of SBT were established, resulting in 32 components being detected within 40 min. Among these compounds, 12 were tentatively identified by comparing the retention times and mass spectral data with those of reference standards and the reference literature; the other 20 components were tentatively assigned solely based on the MS data. Furthermore, metabolites in rat plasma and urine after oral administration of SBT were also analyzed. A total of 19 compounds were identified, including 13 prototypes and six metabolites through metabolic pathways of demethylation and glucuronide conjugation. Glucuronidated alkaloids were the main constituents in the plasma, and were then excreted from urine. This is the first systematic study on the metabolic profiling of SBT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS/MS) method for the determination of bergenin and its phase II metabolite in rat plasma, bile and urine has been developed. Biological samples were pretreated with protein precipitation extraction procedure and enzymatic hydrolysis method was used for converting glucuronide metabolite to its free form bergenin. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reaction monitoring. Negative electrospray ionization was employed as the ionization source. Sulfamethoxazole was used as the internal standard. The separation was performed on a reverse‐phase C18 (250 × 4.6 mm, 5 μm) column with gradient elution consisting of methanol and 0.5% aqueous formic acid. The concentrations of bergenin in all biological samples were in accordance with the requirements of validation of the method. After oral administration of 12 mg/kg of the prototype drug, bergenin and its glucuronide metabolite were determined in plasma, bile and urine. Bergenin in bile was completely excreted in 24 h, and the main excreted amount of bergenin was 97.67% in the first 12 h. The drug recovery in bile within 24 h was 8.97%. In urine, the main excreted amount of bergenin was 95.69% in the first 24 h, and the drug recovery within 24 h was <22.34%. Total recovery of bergenin and its glucuronide metabolite was about 52.51% (20.31% in bile within 24 h, 32.20% in urine within 48 h). The validated method was successfully applied to pharmacokinetic and excretion studies of bergenin.  相似文献   

7.
Sensitive and specific methods for the simultaneous determination of gemfibrozil (Lopid), a lipid-lowering agent, and its metabolites in plasma and urine are described. The methods are based on a fully automated high performance liquid chromatographic (HPLC) system with fluorescence detection. Urine samples, diluted with acetonitrile, were directly analysed by HPLC using a flow and eluent programming method. In the case of plasma, gemfibrozil and its main metabolites were extracted from acidified samples and the resulting extracts injected into the chromatographic system. The sensitivity was approximately 100 ng/mL for gemfibrozil and its four metabolites using 0.5 mL plasma or urine. An acyl glucuronide of gemfibrozil excreted in human urine after oral administration of the drug was isolated and its structure and stability examined.  相似文献   

8.
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative.  相似文献   

9.
The in vivo phase I biotransformation of 17 alpha-methyltestosterone in the horse leads to the formation of a complex mixture of regio- and stereoisomeric C(20)O(2), C(20)O(3) and C(20)O(4) metabolites, excreted in urine as glucuronide and sulphate phase II conjugates. The major pathways of in vivo metabolism are the reduction of the A-ring (di- and tetrahydro), epimerisation at C-17 and oxidations mainly at C-6 and C-16. Some phase I metabolites have been identified previously by positive ion electron ionisation capillary gas chromatography/mass spectrometry (GC/EI + MS) mainly from the characteristic fragmentation patterns of their methyloxime-trimethylsilyl ether (MO-TMS), enol-TMS or TMS ether derivatives. Following oral administration of 17 alpha-methyltestosterone to two castrated thoroughbred male horses, the glucuronic acid conjugates excreted in post-administration urine samples were selectively hydrolysed by E. coli beta-glucuronidase enzymes. Unconjugated metabolites and the steroid aglycones obtained after enzymatic deconjugation were isolated from urine by solid-phase extraction, derivatised as MO-TMS ethers and analysed by GC/EI + MS. In addition to some of the known metabolites previously identified from the characteristic mass spectral fragmentation patterns of 17 alpha-methyl steroids, some isobaric compounds exhibiting a diagnostic loss of 103 mass units from the molecular ions with subsequent losses of trimethylsilanol or methoxy groups and an absence of the classical D-ring fragment ion were detected. From an interpretation of their mass spectra, these compounds were identified as 17-hydroxymethyl metabolites, formed in vivo in the horse by oxidation of the 17-methyl moiety of 17 alpha-methyltestosterone. This study reports on the GC/EI + MS identification of these novel 17-hydroxymethyl C(20)O(3) and C(20)O(4) metabolites of 17 alpha-methyltestosterone excreted in thoroughbred horse urine.  相似文献   

10.
Shuang-Huang-Lian (SHL) is a traditional Chinese formula containing Flos lonicerae, Radix scutellariae (RS) and Fructus forsythiae, and is commonly used for treating acute upper respiratory tract infection, acute bronchitis and light pneumonia. The aim of the present study is to compare the metabolites of baicalin in rats when orally administered with SHL and Radix scutellariae, and try to explore the principle of SHL compatibility. By using LC-MS(n) and HPLC-DAD, the metabolites of baicalin were analyzed from bile, urine and feces of rats dosed with SHL and RS. Our results showed significant difference of baicalin metabolism between RS and SHL. However, baicalein was found to be the main metabolites of baicalin in intestinal tract after oral administration of RS and SHL, glucuronide, glucoside and methylated products were also found in rat urine after administration of either RS or SHL. Meanwhile, several sulphates were found in rat urine after RS administration, but not found after SHL. Among the metabolites of the SHL, potentially there existed a isomerized baicalin and methylated product: 5,7-dihydroxy-6-methoxyisoflavone-7-O-beta-glucopyranuronoside, but without unidentified metabolite M3. Baicalein-6-O-beta-glucopyranuronoside-7-O-beta-glucopyranuronoside and baicalein-6-O-beta-glucose-7-O-beta-glucopyranuronoside were first reported by this study. The major metabolites of baicalin of RS and SHL in rat bile were the same, including baicalin-6-O-beta-glucopyranuronoside-7-O-beta-glucopyranuronoside, baicalin-6-beta-glucopyranuronoside and 6-O-methyl-baicalin-7-O-beta-glucopyranuronoside. Moreover, baicalein-6-O-beta-glucose-7-O-beta-glucopyranuronoside was also first found in rat bile by this study. Although baicalin-6-O-sulfate-7-O-beta-glucopyranuronoside was found in rat bile after RS administration, no sulphated products were found after oral administration of SHL. These differences of baicalin metabolism between RS and SHL indicated that compatibility of medicines could result in the differences of metabolites.  相似文献   

11.
WCK 771 is an l ‐arginine salt of levonadifloxacin (LND) being developed in intravenous dosage form and has recently completed a phase III trial in India. The pharmacokinetics of WCK 771, a novel anti‐MRSA fluoroquinolone, were examined in mice, rats, rabbits, dogs, monkeys and humans after systemic administration during pre‐clinical and clinical investigations. Urine and serum were evaluated for identification of metabolites. It was observed that LND mainly follows phase II biotransformation pathways. All of the species showed a different array of metabolites. In mice, rabbit and dog, the drug was mainly excreted in the form of O‐glucuronide (M7) and acyl glucuronide (M8) conjugates, whereas in rat and human major metabolite was sulfate conjugate (M6). Monkeys exhibited equal distribution of sulfate (M6) and glucuronide conjugates (M7, M8). In addition to these three major phase II metabolites; five phase I oxidative metabolites (M1, M2, M3, M4 and M5) were identified using liquid chromatography tandem mass spectrometry. Out of these eight metabolites M2, M3, M5, M7 and M8 are reported for the first time.  相似文献   

12.
The Metabolism of the Retinoid Ro 10-9359. Isolation and Identification of the Major Metabolites in Human Plasma, Urine and Feces Synthesis of Three Urinary Metabolites After oral administration of therapeutic doses of the 3H-labelled aromatic retinoic acid analog (retinoid) Ro 10-9359 (ethyl all-trans-9-(4-methoxy-2,3,6-trimethyl-phenyl)-3,7-dimethyl-2,4,6,8-nonatetraenoate) to humans 75 and 15% of the 3H-dose were excreted within the first five days in the feces and the urine, respectively. Using chromatographic procedures including high pressure liquid chromatography 18 metabolites could be isolated from human urine. Their structures were elucidated by mass spectrometry and FT–1H-NMR. spectroscopy. In these urinary metabolites the tetraene side chain of the parent compound Ro 10-9359 is shortened. The radioactivity of the identified urinary metabolites accounted for about 11% of the dose. Three urinary metabolites were synthesized. The main part of the radioactivity excreted within the first five days in the feces consisted of unchanged drug (60% of the dose). A smaller (amount 15% of the dose) could not be identified. The unchanged drug and a major metabolite, the corresponding acid, were found in human plasma. In an experiment with bile-duct cannulated rats the radioactively labelled retinoid Ro 10-9359 was injected intravenously. About 70% of the 3H-dose was excreted in the bile, within the first 48 hours. The whole radioactivity of the rat bile consisted of polar metabolites. No unchanged drug could be found. After enzymatic hydrolysis of the bile conjugates three metabolites were isolated. The main metabolite (49% of the i.v. dose) was a conjugate of the corresponding acid of the parent drug, already found as free compound in human plasma. The other bile metabolites (9 and 7% of the i.v. dose) had an intact side chain, too. An enterohepatic recycling of the bile metabolites was observed in the rat.  相似文献   

13.
Urinary concentrations of phenols or their metabolites have been used as biomarkers to assess the prevalence of exposure to these compounds in the general population. Total urinary concentrations, which include both free and conjugated (glucuronide and sulfated) forms of the compounds, are usually reported. From a toxicologic standpoint, the relative concentrations of the free species compared with their conjugated analogs can be important because conjugation may reduce the potential biologic activity of the phenols. In this study, we determined the percentage of glucuronide and sulfate conjugates of three phenolic compounds, bisphenol A (BPA), 2,5-dichlorophenol (2,5-DCP), and 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) in 30 urine samples collected between 2000 and 2004 from a demographically diverse group of anonymous adult volunteers. We used a sensitive on-line solid phase extraction–isotope dilution–high performance liquid chromatography–tandem mass spectrometry method. These three phenols were detected frequently in the urine samples tested. Only small percentages of the compounds (9.5% for BPA, and 3% for 2,5-DCP and BP-3) were excreted in their free form. The percentage of the sulfate conjugate was about twice that of the free compound. The glucuronide conjugate was the major metabolite, representing 69.5% (BPA), 89% (2,5-DCP), and 84.6% (BP-3) of the total amount excreted in urine. These results are in agreement with those reported before which suggested that BPA-glucuronide was an important BPA urinary metabolite in humans. To our knowledge, this is the first study describing the distribution of urinary conjugates of BP-3 and 2,5-DCP in humans.  相似文献   

14.
The metabolic fate of 19-nortestosterone laurate in cattle was investigated to evaluate target analyte(s) appropriate to surveillance for illicit use as a growth promoting agent. Bovine hepatocytes were incubated with either [3H]19-nortestosterone laurate (19-NTL; 4-estren-17 beta-laurate-3-one) or [3H]19-nortestosterone (19-NT; 4-estren-17 beta-ol-3-one; nandrolone). Hepatocyte medium was extracted with solid phase C18 media and analysed by narrow bore radio-HPLC-MSn (LCQ, Finnigan) to evaluate the structure of metabolites of 19-NTL and 19-NT. Radio-HPLC of hepatocyte medium extracts following incubation with [3H]19-NTL confirmed that the first step of biotransformation in liver was hydrolysis of the fatty acid ester to release [3H]19-NT, which, in turn, was converted into a range of metabolites of diverse polarity. Hydrolysis of hepatocyte medium extracts with beta-glucuronidase (Helix pomatia) indicated that some of these metabolites were glucuronide or sulfate conjugates. Structural analysis of unconjugated metabolities by positive-ion atmospheric pressure chemical ionisation MS2 and comparison with available reference preparations indicated biotransformation of 19-NT to 4-estren-17 alpha-ol-3-one, 4-estren-3, 17-dione (major metabolite after 1 h), n-hydroxy-4-estren-3, 17-dione, n-hydroxy-4-estren-17-ol-3-one, 5 beta-estran-3 alpha-ol-17-one (noretiocholanolone) and 5 beta-estran-3 alpha, 17 beta-ol (major metabolite after 4 h). Conjugated metabolites were analysed by electrospray ionization, which revealed the presence of glucuronide conjugates of alpha-(trace) and beta-epimers of 19-NT, n-hydroxy-4-estren-3, 17-dione, n-hydroxy-4-estren-17-ol-3-one and 5 beta-estran-3 alpha, 17 beta-diol. These studies provide a clear indication of the route of hepatic metabolism in the bovine, which may now be readily substantiated by reference to samples, such as urine or bile, derived from animals treated with unlabelled 19-NTL.  相似文献   

15.
本文采用高效液相色谱-电喷雾串联四极杆质谱法对人口服毛果芸香碱后的尿样的代谢产物进行了研究.  相似文献   

16.
A novel direct high-performance liquid chromatographic (HPLC) assay for the simultaneous determination of three salicylate glucuronide conjugates and other salicylate metabolites in human urine has been developed. Salicylate glucuronide conjugates were purified by HPLC from the urine of a volunteer after oral administration of aspirin and identified by selective hydrolysis with beta-glucuronidase and with sodium hydroxide. This method gave high reproducibility with coefficients of variation less than 10%. The total urinary recovery of salicylic acid after a single 1.2-g dose of soluble aspirin was greater than 90%. This assay has been successfully used to re-evaluate the capacity-limited pharmacokinetics of salicylic acid in humans.  相似文献   

17.
Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti‐inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple‐quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple‐quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway.  相似文献   

18.
Liquid chromatography–ion trap mass spectrometry was employed to investigate the metabolism of linarin in rats. Identification and structural elucidation of the metabolites were performed by comparing the differences in molecular masses, retention times, and full scan MS n spectra between linarin and its metabolites. Six metabolites (acacetin, apigenin, acacetin glucuronide, apigenin glucuronide, acacetin sulfate, apigenin sulfate) were detected in rat urine after oral administration of linarin at the dose of 50 mg kg?1. Furthermore, a selective and sensitive liquid chromatography–triple quadruple mass spectrometry assay was developed and validated for the simultaneous determination of linarin and acacetin (the major metabolite of linarin) in rat urine. Chromatographic separation was carried out on a C18 column, and mass spectrometric detection was performed using a triple-quadrupole mass spectrometer coupled with an electrospray ionization source in the positive ion mode. Quantitation of linarin and acacetin was performed using selected reaction monitoring of precursor–product ion transitions at m/z 593 → 285 for linarin, 285 → 242 for acacetin, and 303 → 153 for hesperitin (internal standard), respectively. The assay exhibited good linearity (r > 0.9900) for both linarin and acacetin. The intra- and inter-day precisions were <13.4 % and the accuracy was between ?8.1 and 3.1 %. The method was successfully applied to the urinary excretion study of linarin in rats after oral administration of linarin.  相似文献   

19.
In the present study, toremifene urinary excretion studies were evaluated in order to examine main metabolic reactions and to select target metabolites in doping control analysis. Urine samples from three female subjects were collected every 3 h for at least 15 days after the oral administration of a single dose of Fareston® (60 mg). The elemental compositions of the compounds detected were determined by liquid chromatography-mass spectrometry using a time-of-flight system with accurate mass measurement. More detailed structure elucidation was obtained by monitoring the presence or absence of structure-specific ions, using product ion scan and neutral loss acquisition modes, whereas the metabolites urinary profiles were evaluated in selected reaction monitoring acquisition mode. The results showed that the main routes of phase-I modifications involved carboxylation of the chlorinated side chain, N-demethylation and hydroxylation in different positions. Fifteen metabolites were found in all subjects studied, most of them were detected for more than 10 days in the free, glucuronide and sulphate fractions, with a maximum of excretion generally after 9–22 and 34–47 h from drug administration. These metabolites can be divided in two groups: metabolites with the characteristic chlorine isotope pattern and metabolites without the characteristic chlorine isotope pattern. The most abundant and long-term compounds were the carboxylated metabolites followed by the hydroxylated metabolites. Their product ions originating after collision-induced dissociation were observed to occur prevalently in the dimethylaminoethoxy and in the chlorinated side chains. These structure-specific ions were used to design screening and confirmation procedures to positively identify toremifene administration in doping control analysis.
Figure Suggested main metabolic routes of toremifene, as postulated by excretion studies followed by both LC-MS/MS assays with different acquisition modes and LC-QTOF
Open image in new window
  相似文献   

20.
This paper describes the effects of oral administration of non-steroidal anti-inflammatory drugs on the endogenous and synthetic anabolic androgenic steroids urinary excretion as assessed by gas-chromatography mass-spectrometry. Experiments were carried out on 5 male subjects, with pathologies and/or diseases, treated with non-steroidal anti-inflammatory drugs. To set up the individual baseline variability of testosterone and its main metabolites, urine samples were collected for 3 days, every 2 h prior to the administration of the drug(s); whereas the study of the effects of a single dose of each drug, here considered, on the endogenous androgen steroid urinary concentrations, was assessed by collecting urine samples for 2 days, every 2 h. Data obtained after drugs administration were then evaluated taking into account the individual baseline variability. The results showed that, only in the case of propyphenazone administration, the relative urinary concentrations of some testosterone metabolites were significantly altered. More specifically, the urinary levels of dehydroepiandrosterone, 11keto-etiocholanolone, 11β-hydroxyandrosterone, 11β-hydroxyetiocholanolone, androsterone, etiocholanolone and some metabolite ratios decrease significantly, generally between 2 and 10 h after administration of the drug, whereas no effects were observed on urinary calculated concentrations of testosterone, epitestosterone, 5α-androstane-3α,17β-diol, 5β-androstane-3α,17β-diol and testosterone/epitestosterone ratio. The observed effects do not depend on alterations on pharmacokinetics (excretion/metabolism), but on steroid sample preparation steps (hydrolysis and derivatization) inhibition. More specifically the significant decrease of dehydroepiandrosterone and testosterone metabolites urinary levels was due to a reduced yield of the steroid derivatization step for the presence in urine of the main metabolites of propyphenazone, namely hydroxyl-propyphenazone metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号