首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The well-known Shortest Path problem (SP) consists in finding a shortest path from a source to a destination such that the total cost is minimized. The SP models practical and theoretical problems. However, several shortest path applications rely on uncertain data. The Robust Shortest Path problem (RSP) is a generalization of SP. In the former, the cost of each arc is defined by an interval of possible values for the arc cost. The objective is to minimize the maximum relative regret of the path from the source to the destination. This problem is known as the minmax relative regret RSP and it is NP-Hard. We propose a mixed integer linear programming formulation for this problem. The CPLEX branch-and-bound algorithm based on this formulation is able to find optimal solutions for all instances with 100 nodes, and has an average gap of 17 % on the instances with up to 1,500 nodes. We also develop heuristics with emphasis on providing efficient and scalable methods for solving large instances for the minmax relative regret RSP, based on Pilot method and random-key genetic algorithms. To the best of our knowledge, this is the first work to propose a linear formulation, an exact algorithm and metaheuristics for the minmax relative regret RSP.  相似文献   

2.
We consider linear programming problems with uncertain objective function coefficients. For each coefficient of the objective function, an interval of uncertainty is known, and it is assumed that any coefficient can take on any value from the corresponding interval of uncertainty, regardless of the values taken by other coefficients. It is required to find a minmax regret solution. This problem received considerable attention in the recent literature, but its computational complexity status remained unknown. We prove that the problem is strongly NP-hard. This gives the first known example of a minmax regret optimization problem that is NP-hard in the case of interval-data representation of uncertainty but is polynomially solvable in the case of discrete-scenario representation of uncertainty.  相似文献   

3.
In this paper, we propose a new integer linear programming (ILP) formulation for solving a file transfer scheduling problem (FTSP), which is to minimize the overall time needed to transfer all files to their destinations for a given collection of various sized files in a computer network. Each computer in this network has a limited number of communication ports. The described problem is proved to be NP-hard in a general case. Our formulation enables solving the problem by standard ILP solvers like CPLEX or Gurobi. To prove the validity of the proposed ILP formulation, two new reformulations of FTSP are presented. The results obtained by CPLEX and Gurobi solvers, based on this formulation, are presented and discussed.  相似文献   

4.
A technique is presented for solving the multiple objective integer linear programming problem. The technique can be used to identify some or all efficient solutions. While the technique is applicable with any integer programming algorithm, it is well suited for implementation using integer postoptimality techniques. Such an implementation, based on Balas' Additive algorithm, is described for problems with zero-one variables.  相似文献   

5.
This paper considers the maximum betweenness problem. A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on randomly generated instances from the literature. The results of CPLEX solver, based on the proposed MILP formulation, are compared with results obtained by total enumeration technique. The results show that CPLEX optimally solves instances of up to 30 elements and 60 triples in a short period of time.  相似文献   

6.
We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear IP. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems.  相似文献   

7.
A succinct integer linear programming model for the Steiner problem in networks is presented.  相似文献   

8.
In this paper, I present a mixed integer programming (MIP) formulation for the 1-maximin problem with rectilinear distance. The problem mainly appears in facility location while trying to locate an undesirable facility. The rectilinear distance is quite commonly used in the location literature. Our numerical experiments show that one can solve reasonably large location problems using a standard MIP solver. We also provide a linear programming formulation that helps find an upper bound on the objective function value of the 1-maximin problem with any norm when extreme points of the feasible region are known. We discuss various extension alternatives for the MIP formulation.  相似文献   

9.
In this paper, we consider an extension of the Markovitz model, in which the variance has been replaced with the Value-at-Risk. So a new portfolio optimization problem is formulated. We showed that the model leads to an NP-hard problem, but if the number of past observation T or the number of assets K are low, e.g. fixed to a constant, polynomial time algorithms exist. Furthermore, we showed that the problem can be formulated as an integer programming instance. When K and T are large and αVaR is small—as common in financial practice—the computational results show that the problem can be solved in a reasonable amount of time.  相似文献   

10.
In optimization, it is common to deal with uncertain and inaccurate factors which make it difficult to assign a single value to each parameter in the model. It may be more suitable to assign a set of values to each uncertain parameter. A scenario is defined as a realization of the uncertain parameters. In this context, a robust solution has to be as good as possible on a majority of scenarios and never be too bad. Such characterization admits numerous possible interpretations and therefore gives rise to various approaches of robustness. These approaches differ from each other depending on models used to represent uncertain factors, on methodology used to measure robustness, and finally on analysis and design of solution methods. In this paper, we focus on the application of a recent criterion for the shortest path problem with uncertain arc lengths. We first present two usual uncertainty models: the interval model and the discrete scenario set model. For each model, we then apply a criterion, called bw-robustness (originally proposed by B. Roy) which defines a new measure of robustness. According to each uncertainty model, we propose a formulation in terms of large scale integer linear program. Furthermore, we analyze the theoretical complexity of the resulting problems. Our computational experiments perform on a set of large scale graphs. By observing the results, we can conclude that the approved solvers, e.g. Cplex, are able to solve the mathematical models proposed which are promising for robustness analysis. In the end, we show that our formulations can be applied to the general linear program in which the objective function includes uncertain coefficients.  相似文献   

11.
We specify a variation of the weighting method for multi-criterion optimization which determines nondominated solutions to the bi-criterion integer programming problem. The technique makes use of imposed constraints based on nondominated points. For the bi-criterion case, we develop an algorithm which finds all nondominated points by solving a sequence of single-criterion integer programming problems. We present computational results for the linear 0–1 case and discuss the extension of our algorithm to the general multi-criterion integer programming problem.  相似文献   

12.
The recent development in inverse optimization, in particular the extension from the inverse linear programming problem to the inverse mixed integer linear programming problem (InvMILP), provides more powerful modeling tools but also presents more challenges to the design of efficient solution techniques. The only reported InvMILP algorithm, referred to as AlgInvMILP, although finitely converging to global optimality, suffers two limitations that greatly restrict its applicability: it is time consuming and does not generate a feasible solution except for the optimal one. This paper presents heuristic algorithms that are designed to be implemented and executed in parallel with AlgInvMILP in order to alleviate and overcome its two limitations. Computational experiments show that implementing the heuristic algorithm on one auxiliary processor in parallel with AlgInvMILP on the main processor significantly improves its computational efficiency, in addition to providing a series of improving feasible upper bound solutions. The additional speedup of parallel implementation on two or more auxiliary processors appears to be incremental, but the upper bound can be improved much faster.  相似文献   

13.
With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constitue  相似文献   

14.
We designed and implemented an algorithm to solve the continuos right hand side multiparametric Integer Linear Programming (ILP) problem, that is to solve a family of ILP problems in which the problems are related by having identical objective and matrix coefficients. Our algorithm works by choosing an appropiate finite sequence of nonparametric Mixed Integer Linear Programming (MILP) problems in order to obtain a complete multiparametrical analysis. The algorithm may be implemented by using any software capable of solving MILP problems.  相似文献   

15.
The execution of a given project, with a number of interrelated tasks due to precedence constraints, represents a challenge when one must to control the available resources and the compromised due dates. In this paper, we analyse this problem under uncertain individual task completing times, specifically, we will assume that a given range, for the admissible values of each individual completing time, is available. Taking into account that the precedence relations between tasks must be preserved, each realization of the admissible execution times for the set of tasks will define a new scenario determining the ending time for the project and the subset of critical tasks.  相似文献   

16.
When vehicle routing problems with additional constraints (e.g. capacities or time windows) are solved via column generation and branch-and-price, it is common that the pricing problem requires the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes on the nodes. The pricing problem is usually solved via dynamic programming in two possible ways: requiring elementary paths or allowing paths with cycles. We experimentally compare these two strategies and we evaluate the effectiveness of some algorithmic ideas to improve their performance.  相似文献   

17.
18.
This paper presents branch-and-bound algorithms for the partial inverse mixed integer linear programming (PInvMILP) problem, which is to find a minimal perturbation to the objective function of a mixed integer linear program (MILP), measured by some norm, such that there exists an optimal solution to the perturbed MILP that also satisfies an additional set of linear constraints. This is a new extension to the existing inverse optimization models. Under the weighted $L_1$ and $L_\infty $ norms, the presented algorithms are proved to finitely converge to global optimality. In the presented algorithms, linear programs with complementarity constraints (LPCCs) need to be solved repeatedly as a subroutine, which is analogous to repeatedly solving linear programs for MILPs. Therefore, the computational complexity of the PInvMILP algorithms can be expected to be much worse than that of MILP or LPCC. Computational experiments show that small-sized test instances can be solved within a reasonable time period.  相似文献   

19.
We present cutting plane algorithms for the inverse mixed integer linear programming problem (InvMILP), which is to minimally perturb the objective function of a mixed integer linear program in order to make a given feasible solution optimal.  相似文献   

20.
Many real problems can be modelled as robust shortest path problems on interval digraphs, where intervals represent uncertainty about real costs and a robust path is not too far from the shortest path for each possible configuration of the arc costs.A branch and bound algorithm for this problem is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号