首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function.  相似文献   

2.
Surrogate-based optimization proceeds in cycles. Each cycle consists of analyzing a number of designs, fitting a surrogate, performing optimization based on the surrogate, and finally analyzing a candidate solution. Algorithms that use the surrogate uncertainty estimator to guide the selection of the next sampling candidate are readily available, e.g., the efficient global optimization (EGO) algorithm. However, adding one single point at a time may not be efficient when the main concern is wall-clock time (rather than number of simulations) and simulations can run in parallel. Also, the need for uncertainty estimates limits EGO-like strategies to surrogates normally implemented with such estimates (e.g., kriging and polynomial response surface). We propose the multiple surrogate efficient global optimization (MSEGO) algorithm, which adds several points per optimization cycle with the help of multiple surrogates. We import uncertainty estimates from one surrogate to another to allow use of surrogates that do not provide them. The approach is tested on three analytic examples for nine basic surrogates including kriging, radial basis neural networks, linear Shepard, and six different instances of support vector regression. We found that MSEGO works well even with imported uncertainty estimates, delivering better results in a fraction of the optimization cycles needed by EGO.  相似文献   

3.
In this paper, we combine two types of local search algorithms for global optimization of continuous functions. In the literature, most of the hybrid algorithms are produced by combination of a global optimization algorithm with a local search algorithm and the local search is used to improve the solution quality, not to explore the search space to find independently the global optimum. The focus of this research is on some simple and efficient hybrid algorithms by combining the Nelder–Mead simplex (NM) variants and the bidirectional random optimization (BRO) methods for optimization of continuous functions. The NM explores the whole search space to find some promising areas and then the BRO local search is entered to exploit optimal solution as accurately as possible. Also a new strategy for shrinkage stage borrowed from differential evolution (DE) is incorporated in the NM variants. To examine the efficiency of proposed algorithms, those are evaluated by 25 benchmark functions designed for the special session on real-parameter optimization of CEC2005. A comparison study between the hybrid algorithms and some DE algorithms and non-parametric analysis of obtained results demonstrate that the proposed algorithms outperform most of other algorithms and their difference in most cases is statistically considerable. In a later part of the comparative experiments, a comparison of the proposed algorithms with some other evolutionary algorithms reported in the CEC2005 confirms a better performance of our proposed algorithms.  相似文献   

4.
One of the most commonly encountered approaches for the solution of unconstrained global optimization problems is the application of multi-start algorithms. These algorithms usually combine already computed minimizers and previously selected initial points, to generate new starting points, at which, local search methods are applied to detect new minimizers. Multi-start algorithms are usually terminated once a stochastic criterion is satisfied. In this paper, the operators of the Differential Evolution algorithm are employed to generate the starting points of a global optimization method with dynamic search trajectories. Results for various well-known and widely used test functions are reported, supporting the claim that the proposed approach improves drastically the performance of the algorithm, in terms of the total number of function evaluations required to reach a global minimizer.  相似文献   

5.
In a recent paper the authors introduced an infinite class of global optimization algorithms based upon random sampling from the feasible region and local searches started from selected sample points, based upon an acceptance/rejection criterion. All of the algorithms of that class possess strong theoretical properties.Here we analyze a member of that family, which, although being significantly simpler to implement and more efficient than the well known Multi-Level Single-Linkage algorithm, enjoys the same theoretical properties. It is shown here that, with very high probability, our method is able to discover from which points Multi-Level Single-Linkage will decide to start local search.  相似文献   

6.
We present the AQUARS (A QUAsi-multistart Response Surface) framework for finding the global minimum of a computationally expensive black-box function subject to bound constraints. In a traditional multistart approach, the local search method is blind to the trajectories of the previous local searches. Hence, the algorithm might find the same local minima even if the searches are initiated from points that are far apart. In contrast, AQUARS is a novel approach that locates the promising local minima of the objective function by performing local searches near the local minima of a response surface (RS) model of the objective function. It ignores neighborhoods of fully explored local minima of the RS model and it bounces between the best partially explored local minimum and the least explored local minimum of the RS model. We implement two AQUARS algorithms that use a radial basis function model and compare them with alternative global optimization methods on an 8-dimensional watershed model calibration problem and on 18 test problems. The alternatives include EGO, GLOBALm, MLMSRBF (Regis and Shoemaker in INFORMS J Comput 19(4):497–509, 2007), CGRBF-Restart (Regis and Shoemaker in J Global Optim 37(1):113–135 2007), and multi level single linkage (MLSL) coupled with two types of local solvers: SQP and Mesh Adaptive Direct Search (MADS) combined with kriging. The results show that the AQUARS methods generally use fewer function evaluations to identify the global minimum or to reach a target value compared to the alternatives. In particular, they are much better than EGO and MLSL coupled to MADS with kriging on the watershed calibration problem and on 15 of the test problems.  相似文献   

7.
A crucial step in global optimization algorithms based on random sampling in the search domain is decision about the achievement of a prescribed accuracy. In order to overcome the difficulties related to such a decision, the Bayesian Nonparametric Approach has been introduced. The aim of this paper is to show the effectiveness of the approach when an ad hoc clustering technique is used for obtaining promising starting points for a local search algorithm. Several test problems are considered.  相似文献   

8.
针对目前混沌优化算法在选取局部搜索空间时的盲目性,提出一种具有自适应调节局部搜索空间能力的多点收缩混沌优化方法.该方法在当前搜索空间搜索时保留多个较好搜索点,之后利用这些点来确定之后的局部搜索空间,以达到对不同的函数和当前搜索空间内已进行搜索次数的自适应效果.给出了该算法以概率1收敛的证明.仿真结果表明该算法有效的提高了混沌优化算法的性能,改善了混沌算法的实用性.  相似文献   

9.
We introduce a master–worker framework for parallel global optimization of computationally expensive functions using response surface models. In particular, we parallelize two radial basis function (RBF) methods for global optimization, namely, the RBF method by Gutmann [Gutmann, H.M., 2001a. A radial basis function method for global optimization. Journal of Global Optimization 19(3), 201–227] (Gutmann-RBF) and the RBF method by Regis and Shoemaker [Regis, R.G., Shoemaker, C.A., 2005. Constrained global optimization of expensive black box functions using radial basis functions, Journal of Global Optimization 31, 153–171] (CORS-RBF). We modify these algorithms so that they can generate multiple points for simultaneous evaluation in parallel. We compare the performance of the two parallel RBF methods with a parallel multistart derivative-based algorithm, a parallel multistart derivative-free trust-region algorithm, and a parallel evolutionary algorithm on eleven test problems and on a 6-dimensional groundwater bioremediation application. The results indicate that the two parallel RBF algorithms are generally better than the other three alternatives on most of the test problems. Moreover, the two parallel RBF algorithms have comparable performances on the test problems considered. Finally, we report good speedups for both parallel RBF algorithms when using a small number of processors.  相似文献   

10.
In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each evaluation contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizers entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on stepwise uncertainty reduction, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to the Efficient Global Optimization (EGO) algorithm. An empirical comparison is carried out between our criterion and expected improvement, one of the reference criteria in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global Optimization), is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.  相似文献   

11.
A new efficient interval partitioning approach to solve constrained global optimization problems is proposed. This involves a new parallel subdivision direction selection method as well as an adaptive tree search. The latter explores nodes (intervals in variable domains) using a restricted hybrid depth-first and best-first branching strategy. This hybrid approach is also used for activating local search to identify feasible stationary points. The new tree search management technique results in improved performance across standard solution and computational indicators when compared to previously proposed techniques. On the other hand, the new parallel subdivision direction selection rule detects infeasible and suboptimal boxes earlier than existing rules, and this contributes to performance by enabling earlier reliable deletion of such subintervals from the search space.  相似文献   

12.
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code). This design and analysis adapt the classic ??expected improvement?? (EI) in ??efficient global optimization?? (EGO) through the introduction of an improved estimator of the Kriging predictor variance; this estimator uses parametric bootstrapping. Classic EI and bootstrapped EI are compared through various test functions, including the six-hump camel-back and several Hartmann functions. These empirical results demonstrate that in some applications bootstrapped EI finds the global optimum faster than classic EI does; in general, however, the classic EI may be considered to be a robust global optimizer.  相似文献   

13.
Direct-type global optimization algorithms often spend an excessive number of function evaluations on problems with many local optima exploring suboptimal local minima, thereby delaying discovery of the global minimum. In this paper, a globally-biased simplicial partition Disimpl algorithm for global optimization of expensive Lipschitz continuous functions with an unknown Lipschitz constant is proposed. A scheme for an adaptive balancing of local and global information during the search is introduced, implemented, experimentally investigated, and compared with the well-known Direct and Direct l methods. Extensive numerical experiments executed on 800 multidimensional multiextremal test functions show a promising performance of the new acceleration technique with respect to competitors.  相似文献   

14.
We propose a new globalization strategy that can be used in unconstrained optimization algorithms to support rapid convergence from remote starting points. Our approach is based on using multiple points at each iteration to build a sequence of representative models of the objective function. Using the new information gathered from those multiple points, a local step is gradually improved by updating its direction as well as its length. We give a global convergence result and also provide the parallel implementation details accompanied with a numerical study. Our numerical study shows that the proposed algorithm is a promising alternative as a globalization strategy.  相似文献   

15.
This paper presents an algorithm for global optimization problem whose objective functions is Lipschitz continuous but not necessarily differentiable. The proposed algorithm consists of local and global search procedures which are based on and inspired by quasisecant method, respectively. The aim of the global search procedure is to identify “promising” basins in the search space. Once a promising basin is identified, the search procedure skips from an exhausted area to the obtained basin, and the local search procedure is then applied at this basin. It proves that the proposed algorithm converges to the global minimum solution if the local ones are finite and isolated. The proposed method is tested by academic benchmarks, numerical performance and comparison show that it is efficient and robust. Finally, The method is applied to solve the sensor localization problem.  相似文献   

16.
SPT: a stochastic tunneling algorithm for global optimization   总被引:1,自引:0,他引:1  
A stochastic approach to solving unconstrained continuous-function global optimization problems is presented. It builds on the tunneling approach to deterministic optimization presented by Barhen and co-workers (Bahren and Protopopescu, in: State of the Art in Global Optimization, Kluwer, 1996; Barhen et al., Floudas and Pardalos (eds.), TRUST: a deterministic algorithm for global optimization, 1997) by combining a series of local descents with stochastic searches. The method uses a rejection-based stochastic procedure to locate new local minima descent regions and a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional problems and scales easily to large problems. It is less effective without further heuristics in these latter cases, however. Several improvements to the basic algorithm which make use of approximate estimates of the algorithms parameters for implementation in high-dimensional problems are also discussed. Benchmark results are presented, which show that the algorithm is competitive with the best previously reported global optimization techniques. A successful application of the approach to a large-scale seismology problem of substantial computational complexity using a low-dimensional approximation scheme is also reported.  相似文献   

17.
Expensive optimization aims to find the global minimum of a given function within a very limited number of function evaluations. It has drawn much attention in recent years. The present expensive optimization algorithms focus their attention on metamodeling techniques, and call existing global optimization algorithms as subroutines. So it is difficult for them to keep a good balance between model approximation and global search due to their two-part property. To overcome this difficulty, we try to embed a metamodel mechanism into an efficient evolutionary algorithm, low dimensional simplex evolution (LDSE), in this paper. The proposed algorithm is referred to as the low dimensional simplex evolution extension (LDSEE). It is inherently parallel and self-contained. This renders it very easy to use. Numerical results show that our proposed algorithm is a competitive alternative for expensive optimization problems.  相似文献   

18.
Expensive optimization aims to find the global minimum of a given function within a very limited number of function evaluations. It has drawn much attention in recent years. The present expensive optimization algorithms focus their attention on metamodeling techniques, and call existing global optimization algorithms as subroutines. So it is difficult for them to keep a good balance between model approximation and global search due to their two-part property. To overcome this difficulty, we try to embed a metamodel mechanism into an efficient evolutionary algorithm, low dimensional simplex evolution (LDSE), in this paper. The proposed algorithm is referred to as the low dimensional simplex evolution extension (LDSEE). It is inherently parallel and self-contained. This renders it very easy to use. Numerical results show that our proposed algorithm is a competitive alternative for expensive optimization problems.  相似文献   

19.
A local linear embedding module for evolutionary computation optimization   总被引:1,自引:0,他引:1  
A Local Linear Embedding (LLE) module enhances the performance of two Evolutionary Computation (EC) algorithms employed as search tools in global optimization problems. The LLE employs the stochastic sampling of the data space inherent in Evolutionary Computation in order to reconstruct an approximate mapping from the data space back into the parameter space. This allows to map the target data vector directly into the parameter space in order to obtain a rough estimate of the global optimum, which is then added to the EC generation. This process is iterated and considerably improves the EC convergence. Thirteen standard test functions and two real-world optimization problems serve to benchmark the performance of the method. In most of our tests, optimization aided by the LLE mapping outperforms standard implementations of a genetic algorithm and a particle swarm optimization. The number and ranges of functions we tested suggest that the proposed algorithm can be considered as a valid alternative to traditional EC tools in more general applications. The performance improvement in the early stage of the convergence also suggests that this hybrid implementation could be successful as an initial global search to select candidates for subsequent local optimization.  相似文献   

20.
Evolutionary computations are very effective at performing global search (in probability), however, the speed of convergence could be slow. This paper presents an evolutionary programming algorithm combined with macro-mutation (MM), local linear bisection search (LBS) and crossover operators for global optimization. The MM operator is designed to explore the whole search space and the LBS operator to exploit the neighborhood of the solution. Simulated annealing is adopted to prevent premature convergence. The performance of the proposed algorithm is assessed by numerical experiments on 12 benchmark problems. Combined with MM, the effectiveness of various local search operators is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号