首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper aims to model and investigate the discrete urban road network design problem, using a multi-objective time-dependent decision-making approach. Given a base network made up with two-way links, candidate link expansion projects, and candidate link construction projects, the problem determines the optimal combination of one-way and two-way links, the optimal selection of capacity expansion projects, and the optimal lane allocations on two-way links over a dual time scale. The problem considers both the total travel time and the total CO emissions as the two objective function measures. The problem is modelled using a time-dependent approach that considers a planning horizon of multiple years and both morning and evening peaks. Under this approach, the model allows determining the sequence of link construction, the expansion projects over a predetermined planning horizon, the configuration of street orientations, and the lane allocations for morning and evening peaks in each year of the planning horizon. This model is formulated as a mixed-integer programming problem with mathematical equilibrium constraints. In this regard, two multi-objective metaheuristics, including a modified non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective B-cell algorithm, are proposed to solve the above-mentioned problem. Computational results for various test networks are also presented in this paper.  相似文献   

2.
In this paper, we consider an optimal control problem of switched systems with input and state constraints. Since the complexity of such constraint and switching laws, it is difficult to solve the problem using standard optimization techniques. In addition, although conjugate gradient algorithms are very useful for solving nonlinear optimization problem, in practical implementations, the existing Wolfe condition may never be satisfied due to the existence of numerical errors. And the mode insertion technique only leads to suboptimal solutions, due to only certain mode insertions being considered. Thus, based on an improved conjugate gradient algorithm and a discrete filled function method, an improved bi-level algorithm is proposed to solve this optimization problem. Convergence results indicate that the proposed algorithm is globally convergent. Three numerical examples are solved to illustrate the proposed algorithm converges faster and yields a better cost function value than existing bi-level algorithms.  相似文献   

3.
为描述多方式城市交通网络下公交定价与出行选择行为的相互作用与影响,将出行方式选择与路径选择涵盖于同一网络,建立了上层模型分别以企业利润最大化、乘客出行成本最小化和社会福利最大化为目标函数,下层模型为多方式弹性需求随机用户配流模型的公交定价双层规划模型。运用改进遗传算法对模型整体进行求解,下层模型采用综合对角化算法和MSA算法的组合求解算法。最后,设计了一个算例以说明模型应用。结果表明:运用双层规划模型所确定的公交票价较传统静态票价可使政府、企业及出行者三方都获得更高收益,且上层模型以社会福利最大化为目标函数能代表社会群体中多数人利益,优化效果最为理想。  相似文献   

4.
This paper addresses the highway pavement rehabilitation scheduling and toll pricing issues over a planning horizon. In the highway system concerned, two types of agents are considered, namely highway operator and road users. Two models, which account for different highway regulatory regimes (i.e. public and private), are proposed. In the public regulatory model, the government aims to maximize total discounted social welfare of the transportation system over the planning horizon by determining the optimal pavement rehabilitation schedule and toll level. In the private regulatory regime, a profit-driven private operator seeks to optimize the pavement rehabilitation schedule and toll level to maximize its own discounted net profit over the planning horizon. The proposed models treat the interactions between the highway operator and the road users in the system as a bi-level hierarchical problem in which the upper level is a multi-period pavement rehabilitation scheduling and toll pricing problem, while the lower level is a multi-period route choice equilibrium problem. A heuristic solution algorithm that combines a greedy approach and a sensitivity analysis based approach is developed to solve the proposed bi-level multi-period optimization models. An illustrative example is used to show the applications of the proposed models. The findings show that the highway regulatory regime, pavement deterioration parameter and the roughness-induced vehicle operating cost can significantly affect the pavement rehabilitation schedules and the toll level as well as the performance of transportation system in terms of total life-cycle travel demand, net profit and social welfare.  相似文献   

5.
在实际路网情境下结合车道数、车道宽度、路口信号灯设置等路网物理特性,构建了考虑综合交通阻抗的多车型车辆调度模型,提出了两阶段求解策略:第1阶段设计了改进A-star精确解算法用于计算客户时间距离矩阵;第2阶段针对实际路网的特征设计了混合模拟退火算法求解调度方案。以大连市某配送中心运营实例进行路网情境仿真试验,结果表明:改进A-star算法较改进Dijkstra算法具有更短的路径搜索时间;混合模拟退火算法求解结果较实际调度方案优化了13.1% 的综合成本;路网增流、区域拥堵和路段禁行三类路网情境均能对配送方案的车辆配置、路径选择、客户服务次序、作业时间和违约费用等5方面内容产生干扰,调度计划的制定需要详细考虑这些因素的变化。  相似文献   

6.
提出一个时变双层交通分配模型,其中上层网络管理者设立了一个路段的最大排队长度,其目标是使由网络流和排队长度定义的总出行时间最小.目标函数在离散时段内以路段流量和排队长度作为决策变量,同时考虑不同类型的信号交叉口延误的影响.下层网络用户的反应依赖于上层管理者的决策,其选择是使自身感知阻抗最小的路径,服从一个基于成对组合Logit的路径选择模型,构成一个成对组合Logit的均衡分配问题.结合了交通分配和流传播方法,将其表示为一个均衡约束下的双层数学规划问题,形成了一个Stackelberg非合作博弈.使用遗传算法求解该双层规划问题,并采用实证分析来表现模型的特征和算法的计算表现.结果表明路径重叠、路段流量、路段排队长度等因素对网络均衡流分布均有显著影响.  相似文献   

7.
吕彪  蒲云  刘海旭 《运筹与管理》2013,22(2):188-194
根据随机路网环境下出行者规避风险的路径选择行为,提出了一种考虑路网可靠性和空间公平性的次优拥挤收费双层规划模型。其中,上层模型以具有空间公平性约束条件下最大化路网的社会福利为目标,下层模型是实施拥挤收费条件下考虑行程时间可靠性的弹性需求用户平衡模型。鉴于双层规划模型的复杂性,设计了基于遗传算法和FrankWolfe算法的组合式算法来求解提出的模型。算例结果表明:考虑行程时间可靠性的次优拥挤收费会产生不同于传统次优拥挤收费的平衡流量分布模式,表明出行者的路径选择行为对拥挤收费结果会产生直接影响;此外,算例结果还说明遗传算法对参数设置具有很强的鲁棒性。  相似文献   

8.
This paper proposes an optimisation model and a meta-heuristic algorithm for solving the urban network design problem. The problem consists in optimising the layout of an urban road network by designing directions of existing roads and signal settings at intersections. A non-linear constrained optimisation model for solving this problem is formulated, adopting a bi-level approach in order to reduce the complexity of solution methods and the computation times. A Scatter Search algorithm based on a random descent method is proposed and tested on a real dimension network. Initial results show that the proposed approach allows local optimal solutions to be obtained in reasonable computation times.  相似文献   

9.
针对一般二态系统假设的不足,提出了多状态系统条件下的可靠度优化指派问题。该问题以系统可靠度最大化为优化目标,在考虑部件分配成本和总分派成本预算的前提下,对多状态系统下不同状态对应的性能水平的进行了分析,给出了基于通用生成函数的多状态系统的可靠度评估方法。根据指派问题的组合优化的特性和多状态系统可靠性评估的特点,对传统遗传算法的适应度函数进行了改进,设计了基于整数编码的遗传算法,该算法具有离散变量的设计灵活性和强大的搜索性能。算例实验表明,本文设计的优化算法具有较好的求解质量,同时算法的运行时间也得到了大幅的缩短。本研究为多状态系统的可靠度优化提供了一条可借鉴的思路。  相似文献   

10.
In this paper, we consider a nonlinear switched time-delay (NSTD) system with unknown switching times and unknown system parameters, where the output measurement is uncertain. This system is the underling dynamical system for the batch process of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumoniae. The uncertain output measurement is regarded as a stochastic vector (whose components are stochastic variables) and the only information about its distribution is the first-order moment. The objective of this paper is to identify the unknown quantities of the NSTD system. For this, a distributionally robust optimization problem (a bi-level optimization problem) governed by the NSTD system is proposed, where the relative error under the environment of uncertain output measurements is involved in the cost functional. The bi-level optimization problem is transformed into a single-level optimization problem with non-smooth term through the application of duality theory in probability space. By applying the smoothing technique, the non-smooth term is approximated by a smooth term and the convergence of the approximation is established. Then, the gradients of the cost functional with respect to switching times and system parameters are derived. A hybrid optimization algorithm is developed to solve the transformed problem. Finally, we verify the obtained switching times and system parameters, as well as the effectiveness of the proposed algorithm, by solving this distributionally robust optimization problem.  相似文献   

11.
We consider discrete competitive facility location problems in this paper. Such problems could be viewed as a search of nodes in a network, composed of candidate and customer demand nodes, which connections correspond to attractiveness between customers and facilities located at the candidate nodes. The number of customers is usually very large. For some models of customer behavior exact solution approaches could be used. However, for other models and/or when the size of problem is too high to solve exactly, heuristic algorithms may be used. The solution of discrete competitive facility location problems using genetic algorithms is considered in this paper. The new strategies for dynamic adjustment of some parameters of genetic algorithm, such as probabilities for the crossover and mutation operations are proposed and applied to improve the canonical genetic algorithm. The algorithm is also specially adopted to solve discrete competitive facility location problems by proposing a strategy for selection of the most promising values of the variables in the mutation procedure. The developed genetic algorithm is demonstrated by solving instances of competitive facility location problems for an entering firm.  相似文献   

12.
In this paper, we present an optimization model for integrating link-based discrete credit charging scheme into the discrete network design problem, to improve the transport performance from the perspectives of both transport network planning and travel demand management. The proposed model is a mixed-integer nonlinear bilevel programming problem, which includes an upper level problem for the transport authority and a lower level problem for the network users. The lower level sub-model is the traffic network user equilibrium (UE) formulation for a given network design strategy determined by the upper level problem. The network user at the lower level tries to minimize his/her own generalized travel cost (including both the travel time and the value of the credit charged for using the link) by choosing his/her route. While the transport authority at the upper level tries to find the optimal number of lanes and credit charging level with their locations to minimize the total system travel time (or maximize the transportation system performance). A genetic algorithm is used to solve the proposed mixed-integer nonlinear bilevel programming problem. Numerical experiments show the efficiency of the proposed model for traffic congestion mitigation, reveal that interaction effects across the tradable credit scheme and the discrete network design problem which amplify their individual effects. Moreover, the integrated model can achieve better performance than the sequential decision problems.  相似文献   

13.
CIMS项目网络计划技术中成本优化算法研究   总被引:1,自引:0,他引:1  
现有的网络计划在描述项目时已不能适应越来越大型和复杂的C IM S项目,为此,对现有网络计划中任务的约束条件及逻辑关系进行了扩充,并给出了扩充网络计划中时间参数的计算.在此基础上,提出了一种基于样本的成本优化算法,有效地解决了实际项目中的成本优化问题.  相似文献   

14.
A sales territory design problem faced by a manufacturing company that supplies products to a group of customers located in a service region is addressed in this paper. The planning process of designing the territories has the objective to minimizing the total dispersion of the customers without exceeding a limited budget assigned to each territory. Once territories have been determined, a salesperson has to define the day-by-day routes to satisfy the demand of customers. Currently, the company has established a service level policy that aims to minimize total waiting times during the distribution process. Also, each territory is served by a single salesperson. A novel discrete bilevel optimization model for the sales territory design problem is proposed. This problem can be seen as a bilevel problem with a single leader and multiple independent followers, in which the leader’s problem corresponds to the design of territories (manager of the company), and the routing decision for each territory corresponds to each follower. The hierarchical nature of the current company’s decision-making process triggers some particular characteristics of the bilevel model. A brain storm algorithm that exploits these characteristics is proposed to solve the discrete bilevel problem. The main features of the proposed algorithm are that the workload is used to verify the feasibility and to cluster the leader’s solutions. In addition, four discrete mechanisms are used to generate new solutions, and an elite set of solutions is considered to reduce computational cost. This algorithm is used to solve a real case study, and the results are compared against the current solution given by the company. Results show a reduction of more than 20% in the current costs with the solution obtained by the proposed algorithm. Furthermore, a sensitivity analysis is performed, providing interesting managerial insights to improve the current operations of the company.  相似文献   

15.
Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.  相似文献   

16.
To impose the law of one price (LoOP) restrictions, which state that all firms face the same input prices, Kuosmanen, Cherchye, and Sipiläinen (2006) developed the top-down and bottom-up approaches to maximizing the industry-level cost efficiency. However, the optimal input shadow prices generated by the above approaches need not be unique, which influences the distribution of the efficiency indices at the individual firm level. To solve this problem, in this paper, we developed a pair of two-level mathematical programming models to calculate the upper and lower bounds of cost efficiency for each firm in the case of non-unique LoOP prices while keeping the industry cost efficiency optimal. Furthermore, a base-enumerating algorithm is proposed to solve the lower bound models of the cost efficiency measure, which are bi-level linear programs and NP-hard problems. Lastly, a numerical example is used to demonstrate the proposed approach.  相似文献   

17.
The optimal engineering design problem consists in minimizing the expected total cost of an infrastructure or equipment, including construction and expected repair costs, the latter depending on the failure probabilities of each failure mode. The solution becomes complex because the evaluation of failure probabilities using First-Order Reliability Methods (FORM) involves one optimization problem per failure mode. This paper formulates the optimal engineering design problem as a bi-level problem, i.e., an optimization problem constrained by a collection of other interrelated optimization problems. The structure of this bi-level problem is advantageously exploited using Benders’ decomposition to develop and report an efficient algorithm to solve it. An advantage of the proposed approach is that the design optimization and the reliability calculations are decoupled, resulting in a structurally simple algorithm that exhibits high computational efficiency. Bi-level problems are non-convex by nature and Benders algorithm is intended for convex optimization. However, possible non-convexities can be detected and tackled using simple heuristics. Its practical interest is illustrated through a realistic but simple case study, a breakwater design example with two failure modes: overtopping and armor instability.  相似文献   

18.
The typical assignment problem for finding the optimal assignment of a set of components to a set of locations in a system has been widely studied in practical applications. However, this problem mainly focuses on maximizing the total profit or minimizing the total cost without considering component’s failure. In practice, each component should be multistate due to failure, partially failure, or maintenance. That is, each component has several capacities with a probability distribution and may fail. When a set of multistate components is assigned to a system, the system can be treated as a stochastic-flow network. The network reliability is the probability that d units of homogenous commodity can be transmitted through the network successfully. The multistate components assignment problem to maximize the network reliability is never discussed. Therefore, this paper focuses on solving this problem under an assignment budget constraint, in which each component has an assignment cost. The network reliability under a components assignment can be evaluated in terms of minimal paths and state-space decomposition. Subsequently an optimization method based on genetic algorithm is proposed. The experimental results show that the proposed algorithm can be executed in a reasonable time.  相似文献   

19.
交通事故、恶劣天气以及偶发的交通拥堵等都会导致道路交通网络中行程时间的不确定性,极大地影响了道路交通系统的可靠性,同时给日常生活中出行计划的制定以及出行路径的选择带来了不便。因此,本次研究将综合考虑道路交通网络中由于交通流量的全天变化所导致的路径行程时间的时变特征,以及由于事故、天气等不确定因素所导致的路径行程时间的随机特征,并以此作为路网环境的假设条件,对出行路径选择问题进行研究。具体地,首先建立行程时间的动态随机变量,并在此基础上模拟构建了随机时变网络。随后,定义了该网络环境下路径选择过程中所考虑的成本费用,并通过鲁棒优化的方法,将成本费用鲁棒性最强的路径视为最优路径。随后,在随机一致性条件下,通过数学推导证明了该模型可以简化为解决一个确定性时变网络中的最短路径问题。最终,具有多项式时间计算复杂度的改进Dijkstra算法被应用到模型的求解中,并通过小型算例验证模型及算法的有效性。结果表明,本研究中所提出的方法可以被高效率算法所求解,并且不依赖于先验行程时间概率分布的获取,因此对后续的大规模实际城市道路网络应用提供了良好的理论基础。此外,由于具有行程时间随机时变特征的交通网络更接近实际道路情况,因此本次研究的研究成果具有较高的实际意义和应用价值。  相似文献   

20.
This paper investigates the feature subset selection problem for the binary classification problem using logistic regression model. We developed a modified discrete particle swarm optimization (PSO) algorithm for the feature subset selection problem. This approach embodies an adaptive feature selection procedure which dynamically accounts for the relevance and dependence of the features included the feature subset. We compare the proposed methodology with the tabu search and scatter search algorithms using publicly available datasets. The results show that the proposed discrete PSO algorithm is competitive in terms of both classification accuracy and computational performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号