首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper we study the limit as \(\varepsilon \rightarrow 0\) of the singularly perturbed second order equation \(\varepsilon ^2 \ddot{u}_\varepsilon + \nabla _{\!x} V(t,u_\varepsilon (t))=0\), where V(tx) is a potential. We assume that \(u_0(t)\) is one of its equilibrium points such that \(\nabla _{\!x}V(t,u_0(t))=0\) and \(\nabla _{\!x}^2V(t,u_0(t))>0\). We find that, under suitable initial data, the solutions \(u_\varepsilon \) converge uniformly to \(u_0\), by imposing mild hypotheses on V. A counterexample shows that they cannot be weakened.  相似文献   

2.
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincaré inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of
$$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^{p-2}\nabla u)}=0, \quad \mathrm {in} \ U_\tau = U \times (\tau _1, \tau _2] , \quad p>1,\quad q>1 \end{aligned}$$
and of its associated Dirichlet problem, respectively. For particular ranges of the exponents p and q, we show that any locally nonnegative weak subsolution, taken in \(Q (\subset \bar{Q}\subset U_\tau )\), is controlled from above by the \(L^\alpha (\bar{Q}) \)-norm, for \(\alpha = \max \{p, q+1\}\). As for the global setting, under suitable assumptions on the boundary datum g and on the initial datum, we obtain sup bounds for u, in \(U \times \{ t\}\), which depend on the \(\sup g\) and on the \(L^{q+1}(U \times (\tau _1, \tau _1+t])\)-norm of \((u-\sup g)_+\), for all \(t \in (0, \tau _2-\tau _1]\). On the critical ranges of p and q, a priori local and global \(L^\infty \) estimates require extra qualitative information on u.
  相似文献   

3.
We deal with one dimensional p-Laplace equation of the form
$$\begin{aligned} u_t = (|u_x|^{p-2} u_x )_x + f(x,u), \ x\in (0,l), \ t>0, \end{aligned}$$
under Dirichlet boundary condition, where \(p>2\) and \(f:[0,l]\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with \(f(x,0)=0\). We will prove that if there is at least one eigenvalue of the p-Laplace operator between \(\lim _{u\rightarrow 0} f(x,u)/|u|^{p-2}u\) and \(\lim _{|u|\rightarrow +\infty } f(x,u)/|u|^{p-2}u\), then there exists a nontrivial stationary solution. Moreover we show the existence of a connecting orbit between stationary solutions. The results are based on Conley index and detect stationary states even when those based on fixed point theory do not apply. In order to compute the Conley index for nonlinear semiflows deformation along p is used.
  相似文献   

4.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

5.
In this article we deal with non-smooth dynamical systems expressed by a piecewise first order implicit differential equations of the form
$$\begin{aligned} \dot{x}=1,\quad \left( \dot{y}\right) ^2=\left\{ \begin{array}{lll} g_1(x,y) \quad \text{ if }\quad \varphi (x,y)\ge 0 \\ g_2(x,y) \quad \text{ if }\quad \varphi (x,y)\le 0 \end{array},\right. \end{aligned}$$
where \(g_1,g_2,\varphi :U\rightarrow \mathbb {R}\) are smooth functions and \(U\subseteq \mathbb {R}^2\) is an open set. The main concern is to study sliding modes of such systems around some typical singularities. The novelty of our approach is that some singular perturbation problems of the form
$$\begin{aligned} \dot{x}= f(x,y,\varepsilon ) ,\quad (\varepsilon \dot{ y})^2=g ( x,y,\varepsilon ) \end{aligned}$$
arise when the Sotomayor–Teixeira regularization is applied with \((x, y) \in U\) , \(\varepsilon \ge 0\), and fg smooth in all variables.
  相似文献   

6.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

7.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

8.
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation \(u=(u_{1}, \ldots, u_{N})\):
$$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$
where \({\mathbf {X}}\) is a finite, open, symmetric \(N\)-annulus (with \(N \ge2\)), \(\mathscr{P}=\mathscr{P}(x)\) is an unknown hydrostatic pressure field and \(\varphi\) is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when \(N=3\), the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when \(N=2\), the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions \(N \ge4\) and discuss a number of closely related issues.
  相似文献   

9.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

10.
In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A,  such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.  相似文献   

11.
Conditions guaranteeing asymptotic stability for the differential equation
$$\begin{aligned} x''+h(t)x'+\omega ^2x=0 \qquad (x\in \mathbb {R}) \end{aligned}$$
are studied, where the damping coefficient \(h:[0,\infty )\rightarrow [0,\infty )\) is a locally integrable function, and the frequency \(\omega >0\) is constant. Our conditions need neither the requirement \(h(t)\le \overline{h}<\infty \) (\(t\in [0,\infty )\); \(\overline{h}\) is constant) (“small damping”), nor \(0< \underline{h}\le h(t)\) (\(t\in [0,\infty )\); \(\underline{h}\) is constant) (“large damping”); in other words, they can be applied to the general case \(0\le h(t)<\infty \) (\(t\in [0,\infty \))). We establish a condition which combines weak integral positivity with Smith’s growth condition
$$\begin{aligned} \int ^\infty _0 \exp [-H(t)]\int _0^t \exp [H(s)]\,\mathrm{{d}}s\,\mathrm{{d}}t=\infty \qquad \left( H(t):=\int _0^t h(\tau )\,\mathrm{{d}}\tau \right) , \end{aligned}$$
so it is able to control both the small and the large values of the damping coefficient simultaneously.
  相似文献   

12.
This paper is concerned with the following fractional Schrödinger equation
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s} u+u= k(x)f(u)+h(x) \text{ in } \mathbb {R}^{N}\\ u\in H^{s}(\mathbb {R}^{N}), \, u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$
where \(s\in (0,1),N> 2s, (-\Delta )^{s}\) is the fractional Laplacian, k is a bounded positive function, \(h\in L^{2}(\mathbb {R}^{N}), h\not \equiv 0\) is nonnegative and f is either asymptotically linear or superlinear at infinity. By using the s-harmonic extension technique and suitable variational methods, we prove the existence of at least two positive solutions for the problem under consideration, provided that \(|h|_{2}\) is sufficiently small.
  相似文献   

13.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

14.
We study the Neumann boundary value problem for the second order ODE
$$\begin{aligned} u^{\prime \prime } + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{aligned}$$
(1)
where \(g \in {\mathcal {C}}^1({\mathbb {R}})\) is a bounded function of constant sign, \(a^+,a^-: [0,T] \rightarrow {\mathbb {R}}^+\) are the positive/negative part of a sign-changing weight \(a(t)\) and \(\mu > 0\) is a real parameter. Depending on the sign of \(g^{\prime }(u)\) at infinity, we find existence/multiplicity of solutions for \(\mu \) in a “small” interval near the value
$$\begin{aligned} \mu _c = \frac{\int _0^T a^+(t) \, dt}{\int _0^T a^-(t) \, dt}\,. \end{aligned}$$
The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for \(\mu \rightarrow 0^+\) and \(\mu \rightarrow +\infty \) are given, as well.
  相似文献   

15.
Let (XG) be a G-action topological dynamical system (t.d.s. for short), where G is a countably infinite discrete amenable group. In this paper, we study the topological pressure of the sets of generic points. We show that when the system satisfies the almost specification property, for any G-invariant measure \(\mu \) and any continuous map \(\varphi \),
$$\begin{aligned} P\left( X_{\mu },\varphi ,\{F_n\}\right) = h_{\mu }(X)+\int \varphi d\mu , \end{aligned}$$
where \(\{F_n\}\) is a Følner sequence, \(X_{\mu }\) is the set of generic points of \(\mu \) with respect to (w.r.t. for short) \(\{F_n\}\), \(P(X_{\mu },\varphi ,\{F_n\})\) is the topological pressure of \(X_{\mu }\) for \(\varphi \) w.r.t. \(\{F_n\}\) and \(h_{\mu }(X)\) is the measure-theoretic entropy.
  相似文献   

16.
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations
$$\begin{aligned} \ddot{q}_n= U^{\prime }(q_{n+1}-q_n)-U^{\prime }(q_n-q_{n-1}),\quad n\in \mathbb {Z}, \end{aligned}$$
where \(q_n\) denotes the displacement of the \(n\)-th lattice site and \(U\) is the potential of interaction between two adjacent particles. We investigate the existence of two kinds travelling wave solutions: periodic and solitary ones under some growth conditions on \(U\) which is different from the widely used Ambrosetti–Rabinowitz condition.
  相似文献   

17.
The first part of this paper is a general approach towards chaotic dynamics for a continuous map \(f:X\supset M\rightarrow X\) which employs the fixed point index and continuation. The second part deals with the differential equation
$$\begin{aligned} x'(t)=-\alpha \,x(t-d_{{\varDelta }}(x_t)). \end{aligned}$$
with state-dependent delay. For a suitable parameter \(\alpha \) close to \(5\pi /2\) we construct a delay functional \(d_{{\varDelta }}\), constant near the origin, so that the previous equation has a homoclinic solution, \(h(t)\rightarrow 0\) as \(t\rightarrow \pm \infty \), with certain regularity properties of the linearization of the semiflow along the flowline \(t\mapsto h_t\). The third part applies the method from the beginning to a return map which describes solution behaviour close to the homoclinic loop, and yields the existence of chaotic motion.
  相似文献   

18.
We consider a Riemann problem for the shallow water system \(u_{t} +\big (v+\textstyle \frac{1}{2}u^{2}\big )_{x}=0\), \(v_{t}+\big (u+uv\big )_{x}=0\) and evaluate all singular solutions of the form \(u(x,t)=l(t)+b(t)H\big (x-\gamma (t)\big )+a(t)\delta \big (x-\gamma (t)\big )\), \(v(x,t)=k(t)+c(t)H\big (x-\gamma (t)\big )\), where \(l,b,a,k,c,\gamma :\mathbb {R}\rightarrow \mathbb {R}\) are \(C^{1}\)-functions of time t, H is the Heaviside function, and \(\delta \) stands for the Dirac measure with support at the origin. A product of distributions, not constructed by approximation processes, is used to define a solution concept, that is a consistent extension of the classical solution concept. Results showing the advantage of this framework are briefly presented in the introduction.  相似文献   

19.
We consider the elliptic equation \(-\Delta u +u =0\) with nonlinear boundary condition \(\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), \) where \(\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty \) and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.  相似文献   

20.
It has been conjectured that a locally attracting equilibrium of Clark’s equation \(x_{n+1}=\alpha x_n + (1-\alpha )h(x_{n-k})\) is also globally attracting whenever h is a unimodal or decreasing map with negative Schwarzian derivative. The main aim of this paper is to show that the conjecture is false when \(k\ge 3\). This is done by studying the (Neimark–Sacker) bifurcation at the parameter \(\alpha \) where the locally attracting equilibrium of the equation becomes unstable. Our results, on the other hand, reinforce the validity of the conjecture in the cases \(k=1,2\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号