首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In the present study, Zn1?xNixS (x = 0.0–0.8 mol%) nanoparticles were prepared through the chemical route and the synthesis involved the mixing and drying of zinc acetate and sodium sulphide in an appropriate ratio with the addition of Ni2+ at a proper concentration. The structural and spectroscopic studies are investigated by X-ray diffraction (XRD), absorption spectra, emission and excitation spectra, and Raman spectra. Compared with that of the pristine materials, the absorption band-edge demonstrates an apparently blue shift, which is attributed to the quantum size effect. The average particle size of ZnS nanoparticles is in the range of 2–4 nm deduced from the XRD line broadening. Excited at about 330 nm, a blue emission band at 425 nm can be observed, which corresponds to Ni2+ luminescent center; this result is consistent with the postulation that Ni2+ replaced the Zn2+ ions in the lattice of ZnS nanocrystals. Excitation spectra also confirm the above postulation. The effect of different concentrations of nickel is also studied by Raman spectra.  相似文献   

2.
We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250–310 nm), two-photon (570–620 nm) and three-photon (750–930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565–580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at ?60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos6 θ to cos2 θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.  相似文献   

3.
Eu2+/Mn2+-doped KCaPO4 phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), SEM, photoluminescence excitation, and emission spectra, and the luminescence decay curves were measured. Mn2+ singly doped KCaPO4 shows the weak origin-red luminescence band peaked at about 590 nm. The Eu2+/Mn2+ co-doped phosphors emit two distinctive luminescence bands: a blue one centered at 480 nm originating from Eu2+ ions and a broad red-emitting one peaked at 590 nm from Mn2+ ions. The luminescence intensity from Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ ions. The efficient energy transfer from Eu2+ to Mn2+ was verified by the photoluminescence spectra together with the luminescence decay curves. The resonance-type energy transfer via a dipole–quadrupole interaction mechanism was supported by the decay lifetimes. The emission colors could be tuned by changing the Mn2+-doping concentration.  相似文献   

4.
The present work aims to investigates the native fluorescence and time resolved fluorescence spectroscopic characterization of oral tissues under UV excitation. The fluorescence emission spectra of oral tissues at 280 nm excitation were obtained. From the spectra, it was observed that the alteration in the biochemical and morphological changes present in tissues. Subsequently, the Full width at Half Maximum (FWHM) of every individual spectra of 20 normal and 40 malignant subjects were calculated. The student’s t-test analysis reveals that the data were statistically significant (p?=?0.001). The fluorescence excitation spectra at 350 nm emission of malignant tissues confirms the alteration in protein fluorescence with respect to normal counterpart. To quantify the observed spectral differences, the two ratio variables R1?=?I275/I310 and R2?=?I310/I328 were introduced in the excitation spectra. Among them, the Linear Discriminant Analysis (LDA) of R1 reveals better classification with 86.4 % specificity and 82.5 % sensitivity. The fluorescence decay kinetics of oral tissues was obtained at 350 nm emission and it was found that the decay kinetics was triple exponential. Then the ROC analysis of fractional amplitudes and component lifetime reveals that the average lifetime shows 77 % sensitivity and 70 % specificity with the cut off value 4.85 ns. Briefly, the average lifetime exhibits better statistical significance when compared to fractional amplitudes and component lifetimes.  相似文献   

5.
Ce3+ doped ABaPO4 (A=Li, Na, K) phosphors were prepared by conventional high temperature solid-state reaction. The phosphors were investigated by XRD, photoluminescence excitation and emission spectra, and luminescence decay curves. The five 5d levels corresponding to the 4f1→4f05d1 transition of Ce3+ ions were identified. The spectroscopic parameters, e.g., the 5d barycenter, the crystal-field splitting, and the Stokes shift, were discussed. LiBaPO4:Ce3+ phosphor could be efficiently excited by the near-UV lights (330–420 nm) and showed a broad emission band in the range of 430–620 nm with the maximum wavelength at 468 nm. In contrast, Ce3+-doped NaBaPO4 and KBaPO4 showed only excitation bands in a limited UV region (230–370 nm) and have blue emission at 385 nm and 416 nm, respectively. The temperature quenching of luminescence and the chromaticity coordinates were reported. The luminescence properties were discussed by analyzing the crystal structure and the local surroundings of Ce3+ ions on the Ba2+ sites.  相似文献   

6.
A series of tetravalent cerium ion-doped alkaline-earth-metal tungstate phosphors were prepared by a co-precipitation method with a mixture of ammonium bicarbonate and aqueous ammonia as the precipitating agent. X-ray diffraction, scanning electron microscopy, and photoluminescence were used to characterize the structure, morphology, and luminescent properties of the phosphors. The synthesized cerium-doped tungstate phosphors have a scheelite structure with a pure phase. The scanning electron microscope images show that the grain sizes are in the range from 1.0 to 3.0 µm. Photoluminescence spectra indicate blue emission around 440 nm and the optimized concentrations of tetravalent cerium were 3.0, 2.0, and 3.0 in calcium tungstate, strontium tungstate, and barium tungstate for the highest emission intensities at 365 nm excitation. The Commission Internationale De L'E'clairage chromaticity coordinates of cerium-doped tungstate phosphors, that is, x = 0.14, y = 0.14, exhibit pure blue emission and the synthesized phosphors are promising materials for visual display and solid-state lighting applications.  相似文献   

7.
A detailed study of the spectroscopic properties of the PbF2+GeO2:Er2O3 vitroceramic sample upon 650 nm excitation was investigated. The absorption, emission, excitation spectra, and time-resolved spectra have been measured. The up-conversion of red radiation (650 nm) into UV (368 nm and 379 nm), blue (406.8 nm) and green (522 nm and 540 nm) emissions is observed for Er3+ ions in the sample. The up-conversion process involves a two-photon absorption for the violet, blue, and green emission bands. A three-photon process happens for another violet (379 nm) band.  相似文献   

8.
This paper reports on the preparation, characterization and optical properties of transparent Ba(Co2x Ti1?x )O3 (0 ≤ x ≤ 0.06) thin films prepared by sol–gel method and deposited on fused quartz substrate by spin-coating technique. Their formation is confirmed by X-ray diffraction patterns, energy dispersive X-ray spectrometry and Fourier transformed infrared measurements. Hitherto unreported near-band-gap photoluminescence in ultraviolet, at 378 nm (3.28 eV), of exciton origin is observed which remains unaffected with change in excitation wavelength from 320 to 350 nm. A weak defect emission appears in green region. For larger excitation wavelength, i.e., 488 nm, emission arising from localized states again occurs in green region but with lower energy. The occurrence of efficient violet–blue PL emission is related to ‘direct’ band gap and shallow levels with high optical band gap values. Analysis of band gap variation with dopant concentration, determined using Tauc’s plot assuming them both of ‘direct’ and ‘indirect’ nature, also indicates the ‘direct’ nature. Co+2 ions as dopants promote a decrease of band gap of films linearly. Scanning electron micrographs show the granular and flakes-like surface growth. Atomic force microscopy images show the presence of ribbon-like nanostructured grains throughout the surface of the films which is smooth with small values of surface roughness.  相似文献   

9.
A novel phosphor, Mn4+ doped La2LiTaO6, was developed by solid-state reaction method. The luminescent spectra and emission efficiencies of La2LiTaO6:Mn x 4+ (x = 0.001, 0.003, 0.005 and 0.01) were discussed. The effects of co-doped charge compensation ions, M = Mg2+, Ca2+, Na+, were investigated, respectively. The excitation spectra indicated that La2LiTaO6:Mn4+ could be effectively excited by both NUV light and blue light. The emission spectra of the phosphor exhibit a broadband ranging from 670 to 720 nm with the maximum at about 709 nm in deep red region. The co-doping of Mg2+ could significantly improve the luminescent properties of La2LiTaO6:Mn4+. Thus, phosphor La2LiTaO6:Mn4+, Mg2+ can serve as a key component to improve color rendering of blue-chip white-LEDs.  相似文献   

10.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

11.
Singly distributed YBO3:Eu nanofibers with an average diameter of around 120 nm were fabricated using the electrospinning technique and characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The luminescent properties of the YBO3:Eu nanofibers were studied relative to the corresponding bulk material. The location of the charge transfer band in the excitation spectra shows a slight blueshift in the nanofibers compared with the bulk material. In the emission spectra, the ratio of the red emission at 611 nm to the orange emission at 591 nm (R/O value) in the nanofibers increased slightly, in contrast to the bulk, indicating that improved chromaticity can be obtained from YBO3:Eu nanofibers. The high color-rendering index obtained from them implies that these novel luminescent fibers can be used as potential candidates for nanodevices.  相似文献   

12.
Strontium aluminate (SrAl4O7) nanophosphor codoped with Tm3+–Yb3+ has been synthesized through the combustion route using urea as the reducing agent. Structural, thermal and optical characterizations have been carried out. Heat treatment of the samples shows a change in the crystallite phases and the relative luminescence intensities for the different bands. The nanocrystalline particles in the as-synthesized sample seem to arrange in rod like shapes of submicrometer length on annealing. A broad (350–550 nm) emission in the UV–green region is observed when 266 nm radiation is used for excitation. Intense upconversion (UC) emissions in blue, red and infrared are seen with excitation by 976 nm radiation. An emission at 364 nm not observed earlier and attributed to 1D23H6 transition in Tm3+ is also seen. The blue emission from SrAl4O7:Tm3+/Yb3+ codoped nanophosphor (annealed at 1200°C) exhibits high color purity (89%) and is comparable to phosphors used commercially. The energy transfer mechanisms, responsible for these UC emissions, are proposed and discussed.  相似文献   

13.
A new intense green light-emitting phosphor, the Eu2+-doped (BaO–BaCl2–SiO2) phosphor system, was synthesized at 800°C by the conventional high-temperature solid-state reaction. Its structure and luminescence properties were investigated by using thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), diffuse reflection spectra, photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The photoluminescence spectrum reveals that this phosphor can be efficiently excited by near-ultraviolet (UV) light and blue light in the wavelength region covering 280 and 480 nm, which perfectly matches the emission wavelength of near-UV light-emitting diodes (LEDs). It emits an intense green light peaking at 502 nm, which is promising to develop possible applications for white LEDs.  相似文献   

14.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

15.
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507nm,与理论计算值符合很好;监测482nm发射峰时,对应激发光谱的峰值为287和365nm,监测507nm发射峰时,对应的激发峰为365和405nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了  相似文献   

16.
Heteroatom doping can drastically alter electronic characteristics of carbon nitride quantum dots, thus resulting in unusual properties and related applications. Herein, we used sulfur as the doping element and investigated the influence of doping on the electronic distribution of carbon nitride and the corresponding fluorescent property. A simple synthetic strategy was applied to prepare sulfur-doped carbon nitride (S-g-C3N4) quantum dots through ultrasonic treatment of bulk S-g-C3N4. Characterization results demonstrated that the prepared S-g-C3N4 quantum dots with an average size of 2.0 nm were successfully prepared. Fluorescent properties indicated that S-g-C3N4 quantum dots have an emission peak at 460 nm and cover the emission spectra region up to 550 nm. Furthermore, the fluorescent intensity is greatly increased due to the sonication of bulk S-g-C3N4 into quantum dots. As a result, S-g-C3N4 quantum dots not only show a blue cell imaging, but have a bright green color. Therefore, S-g-C3N4 quantum dot is a promising candidate for bioimaging benefiting from the efficient fluorescent property, good biocompatibility, and low toxicity.  相似文献   

17.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

18.
Green-emitting phosphor Na2Ba2Si2O7:Eu2+ has been synthesized by a conventional high-temperature solid-state reaction. The phase structure and luminescence properties are characterized by the X-ray powder diffraction, diffuse reflectance spectra, photoluminescence excitation and emission spectra, temperature-dependent emission spectra, respectively. It can be efficiently excited in the wavelength range of 325–400 nm and consists of a strong broad green band centered at about 501 nm, which is ascribed to 4f66s05d1 → 4f76s25d0 transition of Eu2+. The critical quenching concentration of Eu2+ in the Na2Ba2Si2O7 host is about 0.8 mol % and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, and the activation energy for thermal quenching is calculated as 0.34 eV.  相似文献   

19.
In this paper, we discussed the optical and luminescence properties of dysprosium oxide containing lithium borate glasses along with the structural properties. Absorption spectra of these glasses show strong absorption bands in ultraviolet and visible regions. Increase in dysprosium oxide content decreases in optical energy band gap, which is explained on the basis of glass structure. These glasses show bright blue emission at 482 nm and yellow emission at 573.5 nm due to 4 F 9/2  →  6 H 15/2 and 4 F 9/2  →  6 H 13/2 transitions of dysprosium ions.  相似文献   

20.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号