共查询到20条相似文献,搜索用时 62 毫秒
1.
根据研究模型首先得出压电陶瓷极化特性的理论推测,然后使用DP-5型介电谱仪,测量由压电陶瓷材料制作的蜂鸣器。实验测出压电陶瓷的极化方式与极化率和外场频率有关,随着频率的增加,压电陶瓷的离子位移极化率、电介质分子取向极化的极化率将减小,最终表现为相对介电常数减小。实验结果与理论猜测吻合。 相似文献
2.
3.
目前压电分流阻尼技术在振动和噪声领域的应用得到了广泛的关注. 本文尝试将压电分流阻尼技术应用于水下吸声领域, 以提高覆盖层的吸声性能. 将压电覆盖层厚度模态的机电方程和声波传播的传递矩阵相结合, 建立一维电声模型. 该模型可以用于分析多层压电和非压电水下吸声覆盖层的吸声性能. 采用该模型分析了0-3型压电复合材料覆盖层的水下吸声性能. 压电复合材料的参数是采用Furukawa的模型计算的. 研究结果表明, 采用合适的分流电阻, 负电容分流电路可以在较宽的频率范围显著提高覆盖层的吸声性能. 其原理可以从阻抗匹配的角度解释, 负电容分流电路可以调整压电覆盖层的表面声阻抗, 使之与水的特性声阻抗相匹配. 相似文献
4.
同时考虑一维梁结构的弯曲和轴向振动,对其压电阻抗模型进行建模分析和试验验证。在0.02~42 kHz频段内区分并标记了一维钢梁弯曲振动模态前18阶及轴向振动模态前3阶。结果表明:在0.02~7.5kHz频段内,数值计算和试验结果中谐振峰对应频率的相对误差较大:11.7%~16.5%,其原因可能是低频时振动能量较低且波的传播受结构阻尼、边界条件及环境噪音等因素影响较为明显;在7.5~42kHz范围内,两者谐振峰位置符合良好,相对误差较小:0.11%~2.31%,表明该模型在高频段具有较好的适用性;轴向振动模态对应频率大于弯曲振动模态。本研究为结构健康监测过程中检测频段的选取及损伤信息的提取提供参考。 相似文献
5.
6.
简述了应用迈克耳孙干涉仪测量压电陶瓷压电常量的原理及实验结果分析.简单介绍了研究压电陶瓷振动特性的方法. 相似文献
7.
8.
为实现对微弱动态响应的准确辨识及故障状态的早期诊断,提出了基于经验模态分析的故障诊断方法,将模态分解、互信息熵与主元分析结合,故障特征更凸显,方法更有效。首先模态分解,得到一系列固有模态分量,利用互信息熵判断所有固有模态分量的高低频分界点并对高频分量自适应阈值去噪。将去噪后的所有高频分量和低频分量主元分析,计算各主元的峭度值,选取峭度值大的分量求时频谱得故障频率,从而确定故障。将该方法应用到含有高频环境噪声的轴承故障信号中诊断可靠、准确。 相似文献
9.
10.
11.
This work concerns the control of sound transmission through double laminated panels with viscoelastic core using semi-passive piezoelectric shunt technique. More specifically, the system consists of two laminated walls, each one composed of three layers and called sandwich panel with an air cavity in between. The external sandwich panel has a surface-mounted piezoelectric patches. The piezoelectric elements, connected with resonant shunt circuits, are used for the vibration damping of some specific resonance frequencies of the coupled system. Firstly, a finite element formulation of the fully coupled visco-electro-mechanical-acoustic system is presented. This formulation takes into account the frequency dependence of the viscoelastic material. A modal reduction approach is then proposed to solve the problem at a lower cost. In the proposed technique, the coupled system is solved by projecting the mechanical displacement unknown on a truncated basis composed by the first real short-circuit structural normal modes and the pressure unknown on a truncated basis composed by the first acoustic modes with rigid boundaries conditions. The few initial electrical unknowns are kept in the reduced system. A static correction is also introduced in order to take into account the effect of higher modes. Various results are presented in order to validate and illustrate the efficiency of the proposed finite element reduced order formulation. 相似文献
12.
Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator 下载免费PDF全文
Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode(TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro–mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro–mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element(FE) analyses. Finally, a prototype of the coupling electro–mechanical resonator is fabricated with two shear-mode PZT5 A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5 A. 相似文献
13.
In this paper, we present a coupled finite element/boundary element method (FEM/BEM) for control of noise radiation and sound transmission of vibrating structure by passive piezoelectric techniques. The system consists of an elastic structure (with surface mounted piezoelectric patches) coupled to external/internal acoustic domains. The passive shunt damping strategy is employed for vibration attenuation in the low frequency range. The originality of the present paper lies in evaluating the classically used FEM/BEM methods for structural–acoustics problems when taking account smart systems at the fluid–structure interfaces. 相似文献
14.
15.
This paper investigates the thermo-electro-mechanical vibration of the rectangular piezoelectric nanoplate under various boundary conditions based on the nonlocal theory and the Mindlin plate theory. It is assumed that the piezoelectric nanoplate is subjected to a biaxial force, an external electric voltage and a uniform temperature rise. The Hamilton's principle is employed to derive the governing equations and boundary conditions, which are then discretized by using the differential quadrature (DQ) method to determine the natural frequencies and mode shapes. The detailed parametric study is conducted to examine the effect of the nonlocal parameter, thermo-electro-mechanical loadings, boundary conditions, aspect ratio and side-to-thickness ratio on the vibration behaviors. 相似文献
16.
This paper aims at developing an integrated design method of the active/passive hybrid type of piezoelectric damping system for reducing the dynamic response of the flexible structures due to external dynamic loads. The design method is based on the numerical optimization technique whose objective function is a control effort of the active damping. A vibration suppression performance, which is evaluated by the maximum value of the gain of the frequency response function of the structure, is constrained. In order to demonstrate the structural damping capability of the hybrid type of piezoelectric damping system designed by proposed method, numerical simulation and laboratory experiment will be done using a three-story flexible structure model equipped with 12 surface bonded PZT tiles pairs. Both numerical and experimental results indicate that the optimally designed hybrid piezoelectric damping system can be successfully achieving excellent performance as compared to a conventional purely active piezoelectric damping system. 相似文献
17.
18.
Based on Timoshenko beam model, a theoretical model of radially polarized piezoelectric ceramic tubes is investigated. In the model, the piezoelectric effects are considered, and the shear correction factor is introduced which reveals effects of the size of the cross-section and Poisson’s ratio. Based on the model, the particular attentions are devoted to effects of the boundary conditions at two ends on flexural resonance frequencies of the piezoelectric ceramic tubes. Changing the sizes of the tubes and the mass loads at both free ends, the variations of the flexural resonance frequencies of free–free piezoelectric ceramic tubes are calculated theoretically. Besides, the flexural resonance frequencies of the piezoelectric ceramic tube cantilevers with mass loads at one free end are also investigated theoretically. To verify accuracy of the theoretical mode, the flexural resonance frequencies for different lengths of the piezoelectric ceramic tubes and different loaded masses are measured experimentally. The theoretical results agree well with the experimental measurement, which demonstrates that the model is accurate for analyzing the flexural resonance frequencies of the piezoelectric ceramic tubes with mass loads. 相似文献
19.
20.
Based on the Rayleigh energy theory combining with Timoshenko beam model, the flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators are investigated. Additionally, the simplified formulae are derived to study the fundamental flexural resonance frequencies of the piezoelectric tubes with free-free ends and cantilevers. By changing the sizes of the tubes and the mass loads at the free ends, the variations of the flexural resonance frequencies of the piezoelectric tubes and cantilevers are calculated theoretically. To verify accuracy of the simplified formulae, by changing the lengths of the tubes and the mass loads the flexural resonance frequencies of the piezoelectric tube with free-free ends are measured experimentally. The theoretical results agree well with the experimental measurements, which demonstrate that the simplified formulae are accurate and effective for analyzing the flexural vibration characteristics of the piezoelectric tubes in the ultrasonic micro-actuators. 相似文献