首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决水声目标小样本模式识别问题,有效地提高复杂海洋环境中的识别精度,提出了一种基于经验模式分解(EMD)、特征距离评估技术(FDET)和组合支持向量机(CSVMs)的水声目标智能识别方法。首先,将滤波、Hilbert包络解调和EMD等信号处理方法对水声目标的辐射噪声信号进行预处理,提取7个包含原始信号和预处理信号的时域和频域统计特征的特征集。然后,通过FDET从原始特征集中选择出7个敏感特征集。最后,将7个敏感特征集输入到7个支持向量机分类器中,利用遗传算法对7个分类器的结果进行合并,构成CSVMs分类器,从而实现对水声目标的智能识别。将该方法应用于舰船等水声目标的识别中,研究结果表明,该方法的识别性能优于单一SVMs分类器:同时,经过FDET得到的敏感特征集能明显地提高识别精度。  相似文献   

2.
基于对目标识别精确性的要求,提出了基于支持向量机的自动目标识别算法。介绍了基于支持向量机的自动目标识别系统的组成和识别流程,实现了目标的特征提取、SVM分类器的参数寻优,并将优化的SVM模型应用于未知图像的目标识别中。实验表明,该方法识别效果良好,具有较好的抗复杂背景的能力。  相似文献   

3.
利用光谱检测和数据挖掘实现不同种类动物血液光谱数据的精确识别与分类具有重要意义,目前尚未见到较为完善及普适的相关研究报道。实验采集了鸽、鸡、鼠、羊四种动物全血和红细胞溶液(浓度为1%)的荧光光谱数据;基于小波变换的软阈值去噪方法,首先对原始光谱数据进行去噪处理,并确定了717个原始特征(包括荧光峰强度值、荧光峰连线斜率等4类特征);提出以“区分度统计量”为核心的特征提取方法,结合主成分分析法和平均影响值算法,实现了对717个原始特征到2个识别特征的高效筛选;进一步建立了径向基核函数的支持向量机分类器,对四类不同动物的全血荧光光谱数据实现了准确率为100%的识别分类,对红细胞荧光光谱数据实现了94.69%~99.12%的识别率;最后蒙特卡洛交叉验证的结果表明所提出的思路和方法对于动物全血溶液的识别分类具有较好的泛化能力,能对荧光光谱数据进行准确的识别分类,因此能够在进出口检查、食品安全、医药等领域发挥重要作用。针对动物血液荧光光谱,提出的基于“区分度统计量”的特征提取方法,相比于传统的人为特征选取方法,能够从大量原始特征中自动提取少量且有效的识别特征,具有较强的普适性和高效性,为其他领域的光谱特征提取和识别分类提供了一种新的思路。  相似文献   

4.
车型自动识别是智能交通系统的重要组成部分。针对现有车型识别存在的问题,提出利用经验模态分解和支持向量机的车型声频识别方法。将车辆行驶的声音信号进行分解,以分解不同模态的能量作为特征向量,并以此作为训练样本对支持向量机构成的车型识别器进行训练,通过对小汽车和卡车的声音信号处理结果表明:利用车辆声音信号能够正确识别不同的车型,识别准确率达95%,是车型识别的有效方法。  相似文献   

5.
针对支持向量机(Support Vector Machine,SVM)的参数优化问题,提出了一种改进的混合蛙跳算法(Improved Shuffled Frog Leaping Algorithm,Im-SFLA),提高了其在实用语音情感识别中的学习能力。首先,我们在SFLA中引入了模拟退火(Simulated Annealing,SA)、免疫接种(Immune Vaccination,IV)、高斯变异和混沌扰动算子,平衡了搜索的高效性和种群的多样性;第二,利用Im-SFLA优化SVM的参数,提出了一种Im-SFLA-SVM方法;第三,分析了烦躁等实用语音情感的声学特征,重点分析了基音、短时能量、共振峰和混沌特征随情感类别的变化特性,构建出144维的情感特征向量并采用LDA降维到4维;最后,在实用语音情感数据库上测试了算法性能,将提出的算法与混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)优化SVM参数的方法(SFLA-SVM方法)、粒子群优化(Particle Swarm Optimization,PSO)算法优化SVM参数的方法(PSO-SVM方法)、基本SVM方法、高斯混合模型(Gaussian Mixture Model,GMM)方法和反向传播(Back Propagation,BP)神经网络法等进行对比。实验结果表明,采用Im-SFLA-SVM方法的平均识别率达到77.8%,分别高于SFLA-SVM方法、PSO-SVM方法、SVM方法、GMM方法和BP神经网络法各1.7%,2.7%,3.4%,4.7%,7.8%,并且对于烦躁这种实用情感的识别率提高效果最为明显,从而证实了Im-SFLA是一种有效的SVM参数选择方法,并且Im-SFLA-SVM方法能显著提升实用语音情感的识别率。  相似文献   

6.
有效特征的选取一直都是语音情感识别算法的关键。为此,针对语音情感特征选择与构建的问题,一种仿选择性注意机制的语音情感识别算法被提出。考虑到语音信号的时频特性,算法首先计算语音信号的语谱图;其次,模仿选择性注意机制,计算语谱图的颜色、方向和亮度特征图,归一化后形成特征矩阵;然后,将特征矩阵重排列并进行PCA降维,形成情感识别特征向量;最后,利用改进的支持向量机分类方法进行语音情感识别。对愤怒、恐惧、高兴、悲伤和惊奇5种情感的识别实验显示,基于选择性注意的方法能够获得较好的识别效果,平均识别率为85.44%。相比于韵律特征和音质特征,语音情感识别率至少提高10%;相比于其它语谱特征,识别率提高7%左右。  相似文献   

7.
支持向量机核函数选择对面部特征识别的作用   总被引:2,自引:0,他引:2  
支持向量机是近些年来发展的新型学习机,该学习机以统计学习理论为基础,以结构风险代替经验风险,因而在模式识别中表现出了优异的性能。通过对核矩阵的计算和研究,并结合人脸特征识别的实验,为在实际应用中核函数的选择提供了一定的理论参考。  相似文献   

8.
支持向量机复合核函数的高光谱显微成像木材树种分类   总被引:1,自引:0,他引:1  
采用体视显微高光谱成像方法,构建木材树种分类识别模型。利用SOC710VP体视显微高光谱图像采集系统获取可见光/近红外(372.53~1 038.57 nm)波段内的木材高光谱图像。首先,采用ENVI软件提取木材样本感兴趣区域(ROI)的平均光谱,分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对光谱数据进行降维。再利用支持向量机(SVM)分别建立木材样本采集波段和特征波长下的分类模型。然后,在空间维采用第一主成分图像,计算基于灰度共生矩阵(GLCM)的木材纹理特征。在0°,45°,90°和135°四个方向计算能量、熵、惯性矩、相关性等16个特征参数后输入SVM进行木材树种分类处理。最后,采用四个复合核函数SVM进行光谱维和空间维的特征融合及分类识别。20个树种的分类实验结果表明,CARS的特征波长选择效果和运行速度较好一些,采用普通SVM进行木材光谱维特征分类处理时,测试集分类准确率达到了92.166 7%。采用基于GLCM的木材空间维纹理特征时,采用普通SVM的测试集分类准确率是60.333 0%,具有较低的分类精度。在将光谱维和空间维纹理特征进行数据融合及分类处理时,采用复合核函数SVM分类具有更好的效果。采用第二个复合核函数的SVM分类精度最高,测试集分类正确率是94.166 7%,运行时间为0.254 7 s。另外,采用第一个和第三个复合核函数的SVM的测试集分类准确率分别是93.333 3%和92.610 0%,运行时间分别为0.180 0和0.260 2 s。可以看出,采用这3种复合核函数的SVM进行木材树种分类,分类精度都高于采用普通SVM的光谱维或者空间维的分类识别精度。因此,利用体视显微高光谱成像和复合核函数SVM可以提高木材树种分类精度,为木材树种快速分类提供了参考。  相似文献   

9.
马侠霖  蔡铭  丁建立 《应用声学》2014,33(4):371-376
机动车车型识别是城市道路交通流监测统计的一个重要方面。本文基于频谱分析与支持向量机方法提出一种车型音频识别方法,以1/3倍频程频谱数据作为特征数据,并使用支持向量机方法完成不同车型分类下的车型识别,同时还分析比较了不同训练样本量及不同单个样本数据量大小对识别结果的影响。在将车型细分的情况下,对小汽车、大型公交车、水泥车、摩托车四种车型的样本外识别结果达到96.9%的准确率,验证了方法的有效性。  相似文献   

10.
基于支持向量机 (support vector machines, SVM) 算法采用激光诱导击穿光谱技术对11种塑料进行了识别. 每种塑料各采集100个光谱, 其中50个光谱作为训练集, 用于建立支持向量机模型, 剩下的50 个光谱作为测试集, 用于测试所建立支持向量机模型的识别精度. 结果表明测试集550个光谱中有543个光谱识别正确,算术平均识别精度达到了98.73%. 其中有6个聚氨酯 (PU) 光谱被误判为有机玻璃 (PMMA), 原因主要是受空气中氮气的影响, 使得有机玻璃和聚氨酯两种塑料在氮元素含量上的差异不能通过N I 746.87 nm, C-N(0,0) 388.3 nm两条谱线的强度准确表征. 本结果为LIBS技术塑料分类提供了方法和数据参考. 关键词: 支持向量机 激光诱导击穿光谱 塑料识别  相似文献   

11.
基于裂变中子(252Cf)对裂变链(235U系统)依存关系,在对252Cf中子裂变信号的测量原理及信号特点分析基础上,开展了基于支持向量机的中子裂变信号时频特征分析及识别研究工作。采用小波分解和去噪小波包分解方法,提取不同状态下随机核信号的时频能量特征,借助于统计学习理论的支持向量机(SVM)分类器原理进行训练和分类。研究结果表明:通过直接小波分解或去噪小波包分解,以获取核信号特征的方法是有效的;去噪小波包分解特征提取方式,较之直接小波分解特征提取方式更能反映中子裂变核系统的内部特征和规律;基于SVM核信号样本的分类,训练后的SVM分类器有着大于70%以上的正确率,且较好地克服了训练样本数较少的问题,验证了方法的可行性和有效性。  相似文献   

12.
Recently, guided ultrasonic waves (GUW) are widely used for damage detection in structural health monitoring (SHM) of different engineering structures. In this study, an intelligent damage detection method is proposed to be used in SHM applications. At first, GUW signal is de-noised by discrete wavelet transform (DWT). After that, wavelet packet transform (WPT) is employed to decompose the de-noised signal and the statistical features of decomposed packets are extracted as damage-sensitive features. Finally, a multiclass support vector machine (SVM) classifier is used to detect the damage and estimate its severity. The proposed method is employed for GUW-based structural damage detection of a thick steel beam. The effects of different parameters on the sensitivity of the method are surveyed. Furthermore, by comparing with some other similar algorithms, the performance of the proposed method is verified. The experimental results demonstrate that the proposed method can appropriately detect a structural damage and estimate its severity.  相似文献   

13.
The operation speed of the algorithm is the critical factor in the real-time monitoring of infrasound signals. The existing methods mainly focus on how to improve the accuracy of classification and can’t be used in real time monitoring because of their slow running speed. We adopt spectral entropy into the feature extraction of infrasound signals. Combined with the support vector machine algorithm, the proposed method effectively extracted the signal features meanwhile greatly improved the operation efficiency. Experimental results show that the running speed of the proposed method is 1.0 s, which is far less than 4.7 s of the comparison method. So the proposed method can be applied in real-time monitoring of earthquakes, tsunamis, landslides and other infrasound events.  相似文献   

14.
为了探测图像中的肤色像素,提出了一种新的方法-支持向量机(SVM:Support Vector Machine)方法.它是一种基于肤色的非特定人的面部定位方法,是非接触人机交互技术和机器视觉中的一个重要内容.实验结果表明,采用支持向量机方法较传统人工神经网络方法不仅有更高的探测准确性,而且具有更好的推广性能.由于SVM采用结构风险最小化(SRM:Structural Risk Minimization)准则,在最小化训练误差(经验风险)的同时,尽量缩小模型预测误差的上界,从而使模型有更好的泛化能力.  相似文献   

15.
随着高速铁路的快速发展,道岔故障频发,成为一直是急需解决的重大安全问题。首先从道岔的运行原理出发,研究了转辙机拉力对道岔的影响;然后进行了转辙机的电动机的功率和电流参数的比较,结果表明,转辙机拉力更能直观反映道岔的运行情况;最后提出了用转辙机拉力参数实现基于粒子群算法优化支持向量机(PSO-SVM)的道岔故障诊断算法。经过对实际数据的处理,表明此种诊断方法对道岔的故障有较好的分辨能力。  相似文献   

16.
提出了一种利用多光谱图像纹理特征进行大米分类的新方法。图像由MS3100-3CCD光谱成像仪获得,光谱成像仪提供3个波段的图像,由近红外(NIR)、红色(R)和绿色(G)组成,因此它能够获取普通数码照相机所不能获取的信息。对3CCD近红外波段图像进行二层小波包分解,得到16个子频带,因为纹理图像的特征信息主要集中在中频,因此提取8个中频频带(带通频带)的熵值,并且作为支持向量机的特征值输入。最后应用支持向量机技术分别对有和没有经过小波包分解的NIR波段纹理图像的熵值进行建模,建模样本和预测模型各为80个,每种各为20个。对四种大米进行处理,结果表明,经过小波包分解的纹理图像的识别率达到了100%,而没有经过小波包分解的纹理图像的识别率只有93.75%,说明结合小波包和支持向量机进行多光谱图像的纹理识别是种非常有效的技术,同时也为大米的分类提供一种快速和无损的新方法。  相似文献   

17.
基于小波变换和支持向量机的光谱多组分分析   总被引:8,自引:6,他引:2  
熊宇虹  温志渝  陈刚  黄俭  徐溢 《光子学报》2005,34(10):1514-1517
以符合朗伯—比尔定律的光谱信号为研究对象,在运用小波变换对光谱信号进行去除噪声处理的基础上,建立了基于支持向量机的多组分分析模型,最后采用计算机模拟的方式对该方法进行了举例说明.实例表明,该方法能较好地解决非线性、小样本条件下的多组分分析问题.  相似文献   

18.
恒星的分类对了解恒星和星系形成与演化历史具有重要的研究价值。面对大型巡天计划及由此产生的海量数据,如何迅速准确地将天体自动分类显得尤为重要。通过对SDSS DR9的恒星光谱数据进行深度置信神经网络(DBN)、神经网络和支持向量机(SVM)等算法分类的对比,分析三种自动光谱分类方法在恒星分类上的适用性。首先利用上述三种方法对K,F恒星进行识别分类,然后再分别对K1,K3和K5次型和F2,F5,F9次型识别,最后基于SVM支持向量机的二次分类模型,利用K次型的数据,构建剔除不属于K次型的模型。结果表明:深度置信网络对K,F型恒星分类效果较好,但是对K,F次型的分类效果不佳;SVM支持向量机在K,F型恒星分类以及相应的次型分类都具有较好的识别率,对K,F型分类效果要好于K,F次型的分类效果;BP神经网络对K,F型恒星以及其次型的识别一般;在剔除不属于K次型实验中,剔除率高达100%,可知SVM能够对未知的光谱数据进行筛选与分类。  相似文献   

19.
刘建峰  淦燕 《应用声学》2016,24(3):231-233
针对传统SVM对噪声点和孤立点敏感的问题,以及不能解决样本特征规模大、含有异构信息、在特征空间中分布不平坦的问题,将模糊隶属度融入多核学习中,提出了一种模糊多核学习的方法。通过实验验证了模糊多核学习比传统SVM、模糊支持向量机以及多核学习具有更好的分类效果,从而验证了所提方法能够有效的克服传统SVM对噪声点敏感以及数据分布不平坦的问题。  相似文献   

20.
葡萄霜霉病是全球危害最严重的葡萄病害,对该病进行早期检测和防治,可提高葡萄品质和产量,提出一种基于多光谱荧光成像技术(M FI)和支持向量机模型(SVM)的霜霉病早期检测方法.对人工接种霜霉病的葡萄叶片(145个)和健康对照叶片(145个)从叶背面连续6天进行多光谱荧光成像,获得试验叶片16个荧光参数(4个单独波段F4...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号