共查询到17条相似文献,搜索用时 62 毫秒
1.
在医学影像图像处理过程中,由于成像技术和成像时间的限制,还无法获取满足诊断需求的清晰图像,这使得在现有技术和极短时间内所获取的医学病理图像需要进行超分辨率的重建处理;基于学习的图像超分辨率思想是从已建立的先验模型中重建出高频细节;在文章中,将要估计的高频信息认为是由主要高频和冗余高频两部分组成,提出了一种基于双字典学习和稀疏表示的医学图像超分辨率重建算法,由主要字典学习和冗余字典学习组成,分别渐近地恢复出主要高频细节和冗余高频细节;实验结果的数据分析和视觉效果显示,所提出双层递进方法能够恢复更多的图像细节且在性能指标上比现有的其他几种方法均有所提高。 相似文献
2.
针对稀疏表示高光谱检测算法性能受背景字典影响较大的问题,充分利用高光谱图像空间信息和光谱主成分信息,提出了一种基于字典学习的稀疏表示异常检测算法。首先利用主成分分析提取高光谱数据的主特征,建立目标主成分空间,并证明了在主成分空间进行字典学习稀疏重构的可行性;然后在主成分空间内构造基于K-SVD算法的训练字典,改善了背景字典性能;采用正交匹配算法重构主成分分量,利用主成分分析反变换得到待检测像元重构光谱,增强了高光谱图像的局部异常特性;最后,基于重构误差异常特性实现高光谱图像异常检测。仿真结果证明了该方法的有效性。 相似文献
3.
从双路字典学习、噪声功率谱估计、语音幅度谱重构角度提出了一种改进的谱特征稀疏表示语音增强方法。在字典学习阶段,融合功率谱与幅度谱特征,采用区分性字典降低语音字典和噪声字典的相干性;在语音增强阶段,提出一种噪声功率谱估计方法对非平稳噪声进行跟踪估计;考虑到幅度谱和功率谱特征对不同噪声的适应程度不同,设计了语音重构权值表。对分别由幅度谱和功率谱恢复而来的两路信号进行自适应加权重构,结合相位补偿函数得到增强后的语音信号。实验结果表明,该方法在平稳、非平稳噪声环境下相比于单一谱特征的语音增强方法平均提高31.6%,改善了语音增强方法的性能。 相似文献
4.
本文针对语音信号稀疏表示及压缩感知问题,将听觉感知引入稀疏系数筛选过程,用掩蔽阈值筛选重要系数,以得到更符合听觉感受的语音稀疏表示。通过对一帧浊音信号分别采用掩蔽阈值和能量阈值方法进行系数筛选对比实验,结果表明掩蔽阈值法具有更好的稀疏表示效果。为验证听觉感知对语音压缩感知性能的影响,与能量阈值法对照对测试语音进行压缩感知观测和重构,通过压缩比、信噪比、主观平均意见分等主客观指标评价其性能,结果表明,掩蔽阈值法可有效地提高压缩比且保证重构语音具有较高的主观听觉质量。 相似文献
5.
6.
基于聚类的自适应图像稀疏表示算法及其应用 总被引:4,自引:4,他引:0
提出了一种针对一类图像进行稀疏表示的字典训练方法,并证明了该算法的收敛性.该算法的几何解释是,以最少的超平面来逼近样本所在的一小块球冠.算法流程为聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,令字典能够更适应于样本的稀疏表示.该算法与传统的字典训练方法相比具有适应性强,对训练样本规模和字典规模要求低,收敛速度... 相似文献
7.
相机阵列是获取空间中目标光场信息的重要手段,采用大规模密集相机阵列获取高角度分辨率光场的方法增加了采样难度和设备成本,同时产生的大量数据的同步和传输需求也限制了光场采样规模.为了实现稀疏光场采样的稠密重建,本文基于稀疏光场数据,分析同一场景多视角图像的空间、角度信息的关联性和冗余性,建立有效的光场字典学习和稀疏编码数学模型,并根据稀疏编码元素间的约束关系,建立虚拟角度图像稀疏编码恢复模型,提出变换域稀疏编码恢复方法,并结合多场景稠密重建实验,验证提出方法的有效性.实验结果表明,本文方法能够对场景中的遮挡、阴影以及复杂的光影变化信息进行高质量恢复,可以用于复杂场景的稀疏光场稠密重建.本研究实现了线性采集稀疏光场的稠密重建,未来将针对非线性采集稀疏光场的稠密重建进行研究,以推进光场成像在实际工程中的应用. 相似文献
8.
稀疏表示广泛用于高光谱图像分类任务中。针对字典原子空间信息和光谱信息未得到充分利用的问题,提出了基于空谱字典的加权联合稀疏表示高光谱图像分类算法。计算测试像元与字典原子的空谱联合距离,选择相似度最高的K个字典原子,并将被选择字典原子的超像素邻域扩充到新的字典中,形成空谱字典。在联合稀疏模型中,对测试像元的超像素邻域像元使用不同的权重,在空谱字典上构建加权稀疏表示模型。基于所选的两个高光谱数据集的实验证明所提算法能够有效地提高分类精度。 相似文献
9.
提出一种面向自定义语音唤醒的单通道语音增强方法。该方法预先将关键词音素信息存入文本编码矩阵,并在常规语音增强模型基础上添加一个基于注意力机制的音素偏置模块。该模块利用语音增强模型中间特征从文本编码矩阵中获取当前帧的音素信息,并将其融入语音增强模型的后续计算中,从而提升语音增强模型对关键词相关音素的增强效果。在不同噪声环境下的实验结果表明,该方法可以更有效地抑制关键词部分噪声。同时所提出方法对比常规语音增强方法与其他文本相关语音增强方法,在自定义语音唤醒性能上可以分别获得14.3%和7.6%的相对提升。 相似文献
10.
针对以往语音增强算法在非平稳噪声环境下性能急剧下降的问题,基于时频字典学习方法提出了一种新的单通道语音增强算法。首先,提出采用时频字典学习方法对噪声的频谱结构的先验信息进行建模,并将其融入到卷积非负矩阵分解的框架下;然后,在固定噪声时频字典情况下,推导了时变增益和语音时频字典的乘性迭代求解公式;最后,利用该迭代公式更新语音和噪声的时变增益系数以及语音的时频字典,通过语音时频字典和时变增益的卷积运算重构出语音的幅度谱并用二值时频掩蔽方法消除噪声干扰。实验结果表明,在多项语音质量评价指标上,本文算法都取得了更好的结果。在非平稳噪声和低信噪比环境下,相比于多带谱减法和非负稀疏编码去噪算法,本文算法更有效地消除了噪声,增强后的语音具有更好的质量。 相似文献
11.
The denoising problem of impure chaotic signals is
addressed in this paper. A method based on sparse representation is
proposed, in which the random frame dictionary is generated by a
chaotic random search algorithm. The numerical simulation shows the
proposed algorithm outperforms those recently reported alternative
denoising methods. 相似文献
12.
评估每个粒子的重要性是确保粒子滤波法跟踪目标准确性的重要因素。针对背景杂波和噪声干扰形成的大量虚警导致小弱目标跟踪识别的随机性和不确定性问题, 提出了一种基于粒子区别性稀疏表征的小弱目标跟踪方法。该方法根据红外图像信号自适应构建分类超完备字典, 即反映目标信号特征的目标字典和表示背景杂波的背景字典, 有利于突出目标粒子和背景粒子在联合分类字典的稀疏表征差异程度;建立基于目标粒子和背景粒子稀疏重构残差差异性的粒子滤波观测模型, 采用随机估计法对字典子空间进行在线更新, 实现对目标状态估计与跟踪。理论分析和试验结果表明, 该方法增强了随机粒子的状态估计能力, 提升了粒子稀疏表征对小弱运动目标的适应能力和跟踪识别准确度。 相似文献
13.
本文提出一种新的结构字典学习方法,并利用它进行图像复原。首先给出结构字典学习的基本内容和方法,然后将傅里叶正则化方法和结构字典学习方法有效整合到图像复原算法中。结构字典学习方法是先将原图像进行结构分解,再分别学习出每个结构图像中的字典,最后利用这些字典对原图像进行稀疏的表示。结合傅里叶正则化,提出了一种有效的迭代图像复原算法:第一步在傅里叶域利用正则化反卷积方法得到图像的初步估计;第二步采用结构字典学习的方法对遗留的噪声进行去噪处理。实验结果表明,提出的方法在改进信噪比和视觉质量上都要优于6种先进的图像复原方法,改进的信噪比平均提升0.5 d B以上。 相似文献
14.
均方误差函数是深度学习单通道语声增强算法最常用的一种代价函数。然而,均方误差值的大小与语声质量好坏并非完全相关。为了提高算法性能,该文在深度神经网络训练中引入了两类与人耳听觉相关的代价函数。第一类是加权欧氏距离代价函数,考虑了人耳听觉掩蔽效应;第二类是Itakura-Satio代价函数、COSH代价函数和加权似然比代价函数,强调语声谱峰的重要性,侧重于恢复干净语声谱峰信息。基于长短期记忆网络结构分析比较了两类代价函数在深度学习单通道语声增强算法中的性能,并与均方误差代价函数进行对比。实验结果表明,基于加权欧式距离代价函数的深度神经网络单通道语声增强算法能够获得更好的语声质量和更低的噪声残留。 相似文献
15.
目前,基于稀疏表示的目标跟踪通常为在目标模板集上重构候选样本的正向模型或者在候选样本集上描述目标模板的反向模型.两个模型的共同点是均需计算候选样本与模板集合之间的稀疏相关系数矩阵.基于此,建立了一个双向联合稀疏表示的跟踪模型,该模型通过L2范数约束正反向稀疏相关系数矩阵达到一致收敛.与之前的单向稀疏表示模型相比,双向稀疏表示跟踪模型在正反向联合求解框架下可以更加充分地挖掘所有候选样本与模板集之间的稀疏映射关系,并将稀疏映射表上对正负模板区分度最好的候选样本作为目标.基于加速逼近梯度(accelerated proximal gradient)快速算法,以矩阵形式推导了双向稀疏表示模型的求解框架,使得候选样本集和目标模板集均以矩阵方式并行求解,在一定程度上提高了计算效率.实验数据表明所提出的算法优于传统的单向稀疏表示目标跟踪算法. 相似文献
16.
为了提高汉语语音的谎言检测准确率,提出了一种对信号倒谱参数进行稀疏分解的方法。首先,采用小波包滤波器组对语音信号进行多频带划分,求得子频带对数能量并进行离散余弦变换以提取小波包频带倒谱系数,结合梅尔频率谱系数得到倒谱参数;其次,依据K-奇异值分解方法分别利用说谎和非说谎两种状态下的语音倒谱参数集训练得到过完备混合字典,在此字典上根据正交匹配追踪算法对参数集进行稀疏编码提取稀疏特征;最终进行多种分类模型下的识别实验·实验结果表明,稀疏分解方法相比传统参数降维方法具有更好的优化性能,本文推荐的稀疏谱特征最佳识别率达到78.34%,优于其他特征参数,显著提高了谎言检测识别准确率。 相似文献
17.
为了解决基于字典学习的超分辨重构算法耗时过长的问题,提出了基于稀疏阈值模型的图像超分辨率重建方法。首先,将联合字典理论与图像块稀疏阈值方法相结合,训练得到高、低分辨率过完备图像字典对。接着,通过稀疏阈值OMP算法对图像特征块进行稀疏表示。然后,通过高分辨率字典重构出初始的超分辨图像。最后,通过改进迭代反投影算法对初始的超分辨图像进行全局优化,从而进一步提高图像重构质量。实验结果表明,超分辨图像重构平均峰值信噪比(PSNR)为30.1 d B,平均结构自相似度(SSIM)为0.937 9,平均计算时间为10.2 s。有效提高了超分辨重构的速度,改善了重构高分辨图像的质量。 相似文献