首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently demonstrated that passive mode locking of a thin-disk Yb:YAG laser is possible and that this concept leads to sources of femtosecond pulses with very high average power. Here we discuss in detail the effect of spatial hole burning on the mode-locking behavior of such lasers. We have developed an efficient numerical model and arrive at quantitative stability criteria which agree well with experimental data. The main result is that stable soliton mode locking can in general be obtained only in a certain range of pulse durations. We use our model to investigate the influence of various cavity parameters and the situation for different gain media. We also consider several methods to reduce the effect of spatial hole burning in order to expand the range of possible pulse durations. Received: 4 September 2000 / Published online: 10 January 2001  相似文献   

2.
In Part I of this paper [1] experimental results were presented and discussed. In this part, we investigate theoretically the dynamics of end-pumped solid-state lasers due to enhanced spatial hole burning. This becomes possible by a fast numerical implementation of the saturated gain in the presence of strong spatial hole burning that allows to treat the multimode case for an arbitrary pumping level. We find for a wide range of laser parameters that the mode spacing of the cw running modes is essentially determined by the length of the gain medium and only weakly depends on the absorption depth of the pump transition. It is shown that spatial hole burning can lead to a completely flat saturated gain profile over half of the gain bandwidth. In mode-locked lasers, the flat gain due to spatial hole burning results in shorter pulses. But the pulses are neither Gaussian-nor sech-shaped as they are in actively or passively mode-locked lasers without spatial hole burning. Further, we show that soliton-like pulse shaping can be used to restore a transform-limited sech-shaped pulse in an end-pumped solid-state laser while exploiting the full gain bandwidth of the laser material.  相似文献   

3.
We report on a high-pulse-energy 888 nm diode-pumped passively mode-locked TEM00 Nd:YVO4 oscillator without spatial hole burning (SHB) effect in active medium. At a pump power of 40 W, the oscillator produced pulse energy up to 270 nJ at a repetition rate of 50 MHz, corresponding to average power of 13.5W with 34% optical-to-optical efficiency. To the best of our knowledge, it is the highest pulse energy obtained at the same pump power. The pulse duration produced varied from 16 to 59 ps. By varying the pump power, we observed a pulse duration ranging from 52 to 59 ps while the time-bandwidth product remained 0.88, and the factors that affect the pulse duration were also discussed. Meanwhile, a novel method of adjusting output coupling (OC) was introduced, which can simplify the structure of laser.  相似文献   

4.
Both standing waves in laser oscillators and spatially inhomogenous cross sections of laser beam and pumprate cause a non-uniform distribution of excited state molecules in longitudinal and transversal direction, respectively. This spatial hole burning however is smoothed by diffusion of the excited molecules. The effect of diffusion is investigated theoretically for an optically pumped far infrared laser as well as the corresponding CO2 pump laser. It is found, that the remaining spatial hole burning in the direction of wave propagation is negligible within CO2 lasers but not within FIR lasers. Concerning the transversal direction it can be shown that in the FIR laser diffusion takes no effect, whereas the transversal distribution of the excited molecules in the CO2 laser is significantly influenced by diffusion.FIR ring lasers avoid longitudinal spatial hole burning, which leads to the common assumption that they use the active medium more efficient than conventional standing wave lasers, hence delivering higher output powers. This expected advantage is levelled out to a great extent by diffusion.  相似文献   

5.
We simulate some laser output patterns observed in our previous experiment employing superposition of Laguerre- Gaussian modes. The rotating pattern is qualitatively analysed from the point of contemporary spatial burning hole effect of the lasing crystal.  相似文献   

6.
We reported a wavelength-flexible all-polarization-maintaining self-sweeping fiber laser based on the intracavity loss tuning brought by the bent optical fiber. The bidirectional cavity structure achieved the self-sweeping effect due to the appearance of the dynamic grating in the active fiber with the spatial hole burning effect. Under this, a section of fiber was bent into a circle for adjusting the loss of the cavity. With a descending diameter of bent fiber circle, the sweeping range moves to the shorter wavelength and covers a wide range from 1055.6 to 1034.6 nm eventually. Both the initial wavelength of self-sweeping regime and the threshold of the fiber laser show exponential correlation with the diameter of the circular fiber. Our work provides a compact and low-cost way to achieve the broad wavelength-flexible self-sweeping operation.  相似文献   

7.
We experimentally investigate the antiphase dynamics phenomenon in a self-Q-switched Nd, Cr:YAG laser operating at 946 nm. Due to the effect of spatial hole burning, the Q-switched pulses sequences of one, two and three modes at different pump power are observed. The experimental results show that the pulse sequences display classic antiphase dynamics.  相似文献   

8.
Single-mode operation of a cw dye laser apparently due to the spatial hole burning effect has been obtained by using a thin metallic absorbing film.  相似文献   

9.
Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.  相似文献   

10.
张建平  杨祥林 《光学学报》1992,12(4):03-307
本文引入描述分布反馈半导体激光器中光场纵向分布不均匀对其阈值条件影响的α_p和δ_p因子.建立了包含空间烧孔效应的速率方程模型,并给出小信号强度、频率调制响应表达式.数值求解理想分布反馈半导体激光器的α_(th)L和δL随平均光子密度变化曲线及对应的α_p和δ_p因子.数值模拟表明,空间烧孔对调制特性影响甚大,频率调制相应与偏置电流有关,为得到较宽的调制频带必须适当选择工作点.  相似文献   

11.
The generation of laser pulses with energies of >40 mJ at 25 Hz and durations variable from 15 ps to 45 ps using an Nd:yttrium aluminum garnet laser mode-locked with a Stankov nonlinear mirror is demonstrated. This laser is used to pump an optical parametric generator-amplifier, which is tunable in the visible spectral range.  相似文献   

12.
The application of a Michelson mode selector for high power single-mode operation of a cw dye laser is reported. By employing the selector for compensation of spatial hole burning effects in a standing-wave cavity, a tunable single-mode output power of 1 W has been obtained at 590 nm. A double Michelson selector has also been applied with the spatial hole burning taken into account.  相似文献   

13.
This paper reports the micromachining results of different materials (Al, Si, InP and fused silica) using a Ti : sapphire laser at the wavelength of 800 and 267 nm with variable pulse lengths in the range from 100 fs to 10 ps. The hole arrays with a diameter up to a few μm through microdrilling are presented. We discussed how an effective suppression of the thermal diffusion inside the ablated materials and an effective microablation could be realized. If the laser fluence is taken only slightly above the threshold, a hole array can be drilled with diameters even smaller than the wavelength of the laser. Some examples are presented in the paper.  相似文献   

14.
A comparison between spatial burning in the semiclassical theory of laser and the intensity contours of the fringes due to multiple reflections in a Fabry-Perot cavity is presented. The concept of spatial hole burning is also used in a quantum well system.  相似文献   

15.
We report on a systematic study of an environmentally stable mode-locked Yb-doped fiber laser operating in the chirped-pulse regime. The linear cavity chirped-pulse fiber laser is constructed with a saturable absorber mirror as nonlinear mode-locking mechanism and a nonlinearity-free transmission-grating-based stretcher/compressor for dispersion management. Mode-locked operation and pulse dynamics from strong normal to strong anomalous total cavity dispersion in the range of +2.5 to ?1.6 ps2 is experimentally studied. Strongly positively chirped pulses from 4.3?ps (0.01?ps2) to 39?ps (2.5?ps2) are obtained at normal net-cavity dispersion. In the anomalous dispersion regime, the laser generates average soliton feature negatively chirped pulses with autocorrelation pulse durations from 0.8?ps (?0.07 ps2) to 3.9?ps (?1.6 ps2). The lowered peak power due to the pulse stretching allows one to increase the double pulse threshold. Based on the numerical simulation, different regimes of mode locking are obtained by varying the intra-cavity dispersion, and the characteristics of average soliton, stretched-pulse, wave-breaking-free and chirped-pulse regimes are discussed.  相似文献   

16.
We have exploited spatial hole burning to achieve remarkably stable single-frequency operation and mode-hop-free tuning over 300 free spectral ranges in an ytterbium-doped fiber laser with a sample standing-wave geometry. This approach makes possible stable and narrow-linewidth single-frequency fiber lasers that do not require components such as Faraday isolators, fiber couplers, and Fabry-Perot filters.  相似文献   

17.
Stable ultrafast laser sources at multi-GHz repetition rates are important for various application areas, such as optical sampling, frequency comb metrology, or advanced high-speed return-to-zero telecom systems. We review SESAM-mode-locked Er,Yb:glass lasers operating in the 1.5 μm spectral region at multi-GHz repetition rates, discussing the key improvements that have enabled increasing the repetition rate up to 100 GHz. We also present further improved results with shorter pulse durations from a 100 GHz Er,Yb:glass laser. With an improved SESAM design we achieved 1.1 ps pulses with up to 30 mW average output power. Moreover, we discuss for the first time the importance of beam quality deteriorations arising from frequency-degenerate higher order spatial modes in such lasers.  相似文献   

18.
We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.  相似文献   

19.
We report a quantitative investigation on the efficiency of the steam laser cleaning process using ns and ps pulses. Well-characterized polymer particles with a diameter of 800 nm dispersed on commercial Si wafers were chosen as a modeling contaminant system. As a result of our investigation, we show for the first time the feasibility of performing efficient steam laser cleaning with ps laser pulses and compare the achieved efficiency with the one obtained for ns pulses. For ns pulses, we found a cleaning fluence threshold of 50 mJ/cm2 that is independent of the pulse durations (2.5 ns and 8 ns) and the wavelengths (532 nm and 583 nm) used. The application of ps pulses (FWHM=30 ps, 5=583 nm) lowered this threshold to 20 mJ/cm2. Both cleaning thresholds are far below the melting thresholds for these laser parameters. Cleaning efficiencies >90% were reached for both pulse durations.  相似文献   

20.
Liu R  Kostko IA  Wu K  Kashyap R 《Optics letters》2007,32(12):1635-1637
We present an experimental study of tuning characteristics and wavelength stability of a 1490 nm doped fiber external cavity laser. The standing wave in the erbium-doped fiber in an external-cavity laser causes spatial hole burning and absorption modulation and forms a dynamic grating. The dynamic grating can effectively suppress side modes and eliminate wavelength fluctuations in the laser. The operating wavelength of this hybrid laser is shown for the first time to our knowledge to be smoothly tunable by changing the semiconductor laser drive current or temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号