首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of triazole and benzotriazole derivatives as novel p90 ribosomal S6 protein kinase 2 (RSK2) inhibitors were designed and synthesized. The in vitro activities against RSK2 were evaluated, and among 14 compounds, compounds 5, 6, 11, 12, 13 and 14 exhibited enzyme IC50 values of 8.91, 2.86, 3.19, 3.05, 4.49 and 2.09 μmol/L re- spectively. The proposed binding modes were simulated using molecular docking method, and the docking results coupled with the stmcture-activi1:y relationship (SAR) analysis indicated that all these active compounds bound to the RSK2 ATP binding site at NTKD, and the electron-donating groups on the 4-position of phenyl were the deter- minant point for the inhibitory activity.  相似文献   

2.
硝基芳烃对黑呆头鱼毒性定量构效关系的研究   总被引:7,自引:1,他引:6  
用CNDO/2法计算50种硝基芳烃化合物的净电荷(QC、QN及Q-NO2);使用MNDO法计算其中42种化合物的ELUMO、EHOMO、生成热之差△(△Hf)及偶极矩μ。定量分析了7种量化参数与黑呆头鱼毒性96h-LC50的构效关系,通过统计分析,得到如下模式:式中:-1gLC50=11. 35-1. 28ELUMO-9.17QN+0. 46EHOMO-0.12μ n=35,r=0.920,s=0.298。应用所得方程及量化参数讨论所研究系列化合物在鱼体内的毒性作用。  相似文献   

3.
4.
By introducing an electron bath that represents the chemical environment in which a chemical species is immersed, and by making use of the second-order Taylor series expansions of the energy as a function of the number of electrons in the intervals between N - 1 and N, and N and N + 1, we show that the electrodonating (omega-) and the electroaccepting (omega+) powers may be defined as omega-/+ = (mu-/+)2/2eta-/+, where mu-/+ are the chemical potentials and eta-/+ are the chemical hardnesses, in their corresponding intervals. Approximate expressions for omega- and omega+ in terms of the ionization potential I and the electron affinity A are established by assuming that eta- = eta+ = eta = mu+ - mu-. The functions omega-/+(r) = omega-/+f -/+(r), where f -/+(r) are the directional Fukui functions, derived from a functional Taylor series for the energy functional truncated at second order, represent the local electrodonating and electroaccepting powers.  相似文献   

5.
徐香  李先国 《结构化学》2012,31(8):1212-1221
The relationship between chemical structures and biodegradation rates (k b) of 22 polycyclic aromatic hydrocarbons (PAHs) was studied using density functional theory (DFT) and stepwise multiple linear regression analysis (SMLR) method.The equilibrium geometries and vibration frequency have been investigated at the B3LYP/6-31+G(d,p) level by thinking Solvent effects using a selfconsistent reaction field (SCRF) based on the polarizable continuum model (PCM).It was concluded that the biodegradation rate was closely related to its molecular structure,and there is one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq) and k b.By means of regression analysis,the main factors affecting the biodegradation rate were obtained and the equation of quantitative structure-activity relationship (QSAR) was successfully established kb =-0.653+0.001Freq+0.068CQ+0.049N1.Statistical evaluation of the developed QSAR showed that the relationships were statistically significant and the model had good predictive ability.The fact that a bending frequency is more important than the HOMO or LUMO energies in predicting k b suggests that the bending of benzene ring might play an important role in the enzymatic catalysis of the initial oxidation step.  相似文献   

6.
Density functional theory calculations have been performed to study the interaction of small silver clusters, Ag2 ~Ag9, with HCN. The adsorption of HCN on-top site of the silver cluster, among various possible sites, is energetically preferred. The adsorption energies of HCN on the silver clusters reach a local maximum at n = 4, which is only about 0.450 eV, indicating that the adsorbed HCN molecule is weakly perturbed. The adsorbed C–N and C–H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.  相似文献   

7.
The electronic structures of single-walled carbon nanotubes (SWCNTs) were modulated by filling with tetracyanoquinodimethane (TCNQ), a strong electron acceptor. The structures of TCNQ-filled SWCNTs were checked by X-ray diffraction analysis, high-resolution transmission electron microscopy and Raman spectroscopy. Optical absorption spectroscopy demonstrated an enhanced reactivity between aryl diazonium and semiconducting SWCNTs.  相似文献   

8.
The geometric structure, mechanism of detonation initiation and stability of transition metal carbohydrazide (CHZ) nitrates are investigated via density functional theory. The obtained results show that the Heyd-Scuseria-Ernzerhof (HSE) functional yields the most accurate geometry. The initiating reaction of detonation in [Mn(CHZ)3](NO3)2 and [Zn(CHZ)3](NO3)2 is the formation of NO3 radicals. The calculated heat of formation and energy gap predict that the Mn and Zn complexes, which have the half-filled (3d5) and full-filled (3d10) electron configurations for the transition metal ions, respectively are more stable than the Co, Ni and Cu complexes. This indicates that the electron configuration of transition metal ion plays an important role in the stabilities of these energetic complexes.  相似文献   

9.
Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules including small molecules and polymers have been originally designed and synthesized with the aim of producing nanostructures with controllable-growth and materials with high-performance. Literature coverage is through 2004–2012. This review gives a full summary of related studies in our group.  相似文献   

10.
We adopt the density function theory with generalized approximation by the Beeke exchange plus Lee-Yang-Parr correlation functional to calculate the electronic first-principles band structure of tin-phthalocyanine (SnPc). The intermolecular interaction related to transport behavior was analyzed from the F-point wave function as well as from the bandwidths and band gaps. From the calculated bandwidths of the frontier bands as well as the effective masses of the electron and hole, it can be concluded that the mobility of the electron is about two times larger than that of the hole. Furthermore, when several bands near the Fermi surface are taken into account, we find that the interband gaps within the unoccupied bands are generally smaller than those of the occupied bands, indicating that the electron can hop from one band to another which is much easier than the hole. This may happen through electron-phonon coupling for instance, thus effectively yielding an even larger mobility for the electron than for the hole. These facts indicate that in SnPc the electrons are the dominant carriers in transport, in contrast to most organic materials.  相似文献   

11.
We consider a bistable mesoscopic chemical reaction system and calculate entropy produc- tion along the dominant pathway during nonequilibrium phase transition. Using probability generating function method and eikonal approximation, we first convert the chemical master equation into the classical Hamilton-Jacobi equation, and then find the dominant pathways between two steady states in the phase space by calculating zero-energy trajectories. We find that entropy productions are related to the actions of the forward and backward dominant pathways. At the coexistence point where the stabilities of the two steady states are equiv alent, both the system entropy change and the medium entropy change are zero; whereas at non-coexistence point both of them are nonzero.  相似文献   

12.
The thermoelectric properties of CuGaTe2 crystal are investigated by using the first-principles method and semi-classical Boltzmann theory. We find that the electronic structure of CuGaTe2 is favorable for p-type doping. The transport coefficients can be tuned by doping and changing the work temperature to yield an optimized thermoelectric performance. The optimal doping concentration is 2 × 1020 cm-3, in which the maximum ZT value can reach 1.65 at 900 K. The results suggest CuGaTe2 might find promising applications as good thermoelectric materials, particularly at high temperature.  相似文献   

13.
采用密度泛函理论方法计算偶氮染料类化合物的量子化学参数,研究该类化合物结构与光响应活性的定量构效关系(QSAR),应用多元回归方法建立的方程具有显著统计学意义,并结合紫外光谱结果进行降解过程预测.结果表明:光催化体系中会最先造成偶氮染料的N=N键与萘环的断开,然后再生成其他副产物,副产物再经过电子转移、开环等一系列反应...  相似文献   

14.
The C-I bond dissociation enthalpies (BDE) of various organic iodides were calculated using high-level theoretical methods including MP2 and CCSD(T) with extrapolated basis set as well as a number of density functional theory methods. After systematic evaluation of the theoretical results against available experimental C-I BDEs, it was found that the MPW LYPIM method gave the lowest root mean square error. We, therefore, used this method to examine the substituent effects on different categories of C(sp3)-I and C(sp2)-I bonds. Fur thermore, the remote substituent effects on the C-I BDEs of substituted iodobenzenes and substituted (iodomethyl)benzenes were also investigated at the same level. The C-I BDEs of typical heteroaromatic iodides including five-membered and six-membered heterocyclic iodides were also examined.  相似文献   

15.
Alkali halide clusters are interesting model systems that can provide information about how crystal properties evolve. To study these properties, a high-resolution atmospheric pressure inlet time-of-flight mass spectrometry (APi-TOF-MS) study of the sequential sodium halides series, C1-(NaC1)n and Br-(NaBr)m, has been reported, and the viability of the APi-TOF- MS equipped with an electrospray ionization source in determining cluster compositions has been demonstrated. The isotopic patterns were well resolved, as n=4 and 7 were determined to be the magic numbers for C1-(NaC1)n clusters, which were particularly abundant in the mass spectra. A global minimum search based on density functional theory enabled basin hopping yield the most stable structures for the mentioned series. The structures exhibit several distinct motifs which can be roughly categorized as linear chain, rock salt, and hexag- onal ring. This work provides an effective way to discover and elucidate the nonstoichiometry sodium halide clusters. These clusters possess very high vertical detachment energies and are generally called as superhalogens, which play important roles in chemistry because they are widely used in the synthesis of new classes of charge-transfer salts.  相似文献   

16.
Through the theoretical calculation of structural optimization, vibrational frequencies and atomization energies with one method of density functional theory (B3LYP) and two post- Hartree-Fock approaches (MP2, CCSD(T)), several stable isomers for new three pnictogen dianionic Sb4^2-, Bi4^2-, and (SbBi)2^2- species were determined. For two homoatomic Sb4^2- and Bi4^2- species, there are three stable isomers: square (D4h), roof-shaped (C2v-1), and C2v-2 structure with the square isomer being the ground state. For the heteroatomic dian- ionic (SbBi)2^2- species, there are also three stable isomers: rhombus (D2h), roof-shaped (C1), and C2v structures with the rhombic isomer being the ground state. The calculated NICS values show that nucleus-independent chemical shifts (NICS) values of roof-shaped isomers for Sb4^2-, Bi4^2-, and (SbBi)2^2- species are all negative, consequently indicating that these roof-shaped isomers possess aromaticities. NICS values for the planar ring isomers are all positive, suggesting that these three planar ring isomers have antiaromatic characters. The aromaticity for the two stable roof-shaped and square isomers are preliminarily explained and discussed with MO analysis.  相似文献   

17.
Manganese oxide cluster cations Mnm180n+ were prepared by laser ablation and reacted with hydrogen sulfide (H2S) in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments suggest that oxygen-for-sulfur (O/S) ex- change reaction to release water took place in the reactor for most of the manganese oxide cluster cations: MnmlSOn++H2S→Mnm18On-1S++H218O. Density functional theory cal- culations were performed for reaction mechanisms of Mn202++H2S, Mn203++H2S, and Mn204++H2S. The computational results indicate these O/S exchange reactions are both thermodynamically and kinetically favorable, thus in good agreement with the experimental observations. The O/S exchange reactions identified in this gas-phase cluster study parallel similar behavior of related condensed phase reaction systems.  相似文献   

18.
The electronic structure of the perovskite LaCoO3 at room temperature structure (293 K) was calculated by using PBE, PBE+U and HSE. Different spin configurations have been considered. Our calculations showed that the choice of the Hubbard U parameter in DFT+U and mixing factor α in HSE significantly influenced the band gap as well as relative energies. For the spin exited states, the optimal value for U and α were 3.0 eV and 0.05, respectively. Our calculation also emphasized that when U〉5.0 eV, PBE+U would lead to unreasonable electronic structure and energy order.  相似文献   

19.
By means of density functional calculations, the structural and electronic properties of chemical modification of pristine and Ca-doped BeO nanotubes were investigated with NH3 and H20 molecules. It was found that the NH3 and H20 molecules can be adsorbed on the Be atom of the tube sidewall with the adsorption energies of about 36.1 and 39.0 kcal/mol, respectively. Density of states analysis shows that the electronic properties of the BeONT are slightly changed after the adsorption processes. Substitution of a Be atom in the tube surface with a Ca atom increases the adsorption energies by about 7.4 and 14.7 kcal/mol for NH3 and H20, respectively. Unlike the pristine tube, the electronic properties of Ca-doped BeONT are sensitive to NH3 and H20 molecules. Also, the Ca-doped tube is much more sensitive to H20 molecule than NH3 one.  相似文献   

20.
The molecular orientation of ellipsoidal C70 in carbon nanotubes is carefully studied by first principles calculations. Using (14, 7) single-wall carbon nanotube (SWCNT) as a prototype material, we explored that the weak chemical interaction between SWCNT and C70 was the crucial factor to determine the molecular orientation. However, the small energy difference makes the distinguishment of two possible molecular orientations difficult. By simulating scanning tunneling microscope images and optical properties, we found that local electronic states sensitively depended on the molecular orientation of ellipsoidal C70, which provided a practical way of using scanning tunneling microscope to recognize the molecular orientation of ellipsoidal C70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号