首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, anticancer, antibacterial (against hospital-isolated antibiotic-resistant Escherichia coli strains), antifungal, and antioxidant effects of synthesized heterocyclic compounds 5 and 7 containing thiazole core were examined. Cytotoxicity testing was utilized against MCF-7 breast cancer cells via MTT cell viability assay. Antibacterial and antifungal activities were checked out according to Clinical and Laboratory Standards Institute (CLSI) guidelines, and antioxidant properties were evaluated through scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. Results showed the viability of breast cancer cell lines was reliant on concentration of heterocycles and time of incubation. Synthetic compounds exhibited excellent antibacterial and antifungal properties base on their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values as well as high antioxidant activities according to their IC50 values. Higher anticancer and antibacterial properties were observed with compound 7; on the contrary, thiazole 5 had better antioxidant effects. They can be introduced as potent antimicrobial, antioxidant, and anticancer agents.  相似文献   

2.
Isoprenoids are natural compounds essential for a great number of cellular functions. One of them is farnesol (FOH), which can reduce cell proliferation, but its low solubility in aqueous solvents limits its possible clinical use as a pharmacological tool. One alternative is the use of cyclodextrins (CDs) which house hydrophobic molecules forming inclusion complexes. To assess FOH potential application in anticancer treatments, Sulfobutylated β-cyclodextrin Sodium Salt (SBE-β-CD) was selected, due to it has high solubility, approbation by the FDA, and numerous studies that ensure its safety to be administered parenterally or orally without nephrotoxicity associated. The therapeutic action of farnesol and complex were studied in different carcinoma cells, compared with a normal cell line. Farnesol showed selectivity, affecting the viability of colon and liver cancer cells more than in breast cancer cells and fibroblasts. All cells suffered apoptosis after being treated with 150 μM of free FOH, but the complex reduced their cell viability between 50 and 75%. Similar results were obtained for both types of isomers, and the addition of phosphatidylcholine reverses this effect. Finally, cell cycle analysis corroborates the action of FOH as inducer of a G0/G1 phase; when the cells were treated using the complex form, this viability was reduced, reaching 50% in the case of colon and liver, 60% in fibroblasts, and only 75% in breast cancer.  相似文献   

3.
Voltage-gated potassium channels of the Kv1.3 type are considered a potential new molecular target in several pathologies, including some cancer disorders and COVID-19. Lipophilic non-toxic organic inhibitors of Kv1.3 channels, such as statins and flavonoids, may have clinical applications in supporting the therapy of some cancer diseases, such as breast, pancreas, and lung cancer; melanoma; or chronic lymphocytic leukemia. This study focuses on the influence of the co-application of statins—simvastatin (SIM) or mevastatin (MEV)—with flavonoids 8-prenylnaringenin (8-PN), 6-prenylnarigenin (6-PN), xanthohumol (XANT), acacetin (ACAC), or chrysin on the activity of Kv1.3 channels, viability, and the apoptosis of cancer cells in the human T cell line Jurkat. We showed that the inhibitory effect of co-application of the statins with flavonoids was significantly more potent than the effects exerted by each compound applied alone. Combinations of simvastatin with chrysin, as well as mevastatin with 8-prenylnaringenin, seem to be the most promising. We also found that these results correlate with an increased ability of the statin–flavonoid combination to reduce viability and induce apoptosis in cancer cells compared to single compounds. Our findings suggest that the co-application of statins and flavonoids at low concentrations may increase the effectiveness and safety of cancer therapy. Thus, the simultaneous application of statins and flavonoids may be a new and promising anticancer strategy.  相似文献   

4.
Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.  相似文献   

5.
6.
Polyamine (PA) catabolism is often reduced in cancer cells. The activation of this metabolic pathway produces cytotoxic substances that might cause apoptosis in cancer cells. Chemical compounds able to restore the level of PA catabolism in tumors could become potential antineoplastic agents. The search for activators of PA catabolism among bicyclononan-9-ones is a promising strategy for drug development. The aim of the study was to evaluate the biological activity of new 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives that have antiproliferative properties by accelerating PA catabolism. Eight bispidine derivatives were synthetized and demonstrated the ability to activate PA catabolism in regenerating rat liver homogenates. However, only three of them demonstrated a potent ability to decrease the viability of cancer cells in the MTT assay. Compounds 4c and 4e could induce apoptosis more effectively in cancer HepG2 cells rather than in normal WI-38 fibroblasts. The lead compound 4e could significantly enhance cancer cell death, but not the death of normal cells if PAs were added to the cell culture media. Thus, the bispidine derivative 4e 3-(3-methoxypropyl)-7-[3-(1H-piperazin-1-yl)ethyl]-3,7-diazabicyclo[3.3.1]nonane could become a potential anticancer drug substance whose mechanism relies on the induction of PA catabolism in cancer cells.  相似文献   

7.
《化学:亚洲杂志》2018,13(18):2730-2738
A promising cancer‐targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF‐related apoptosis‐inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)−polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL‐induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer‐cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP‐2/MMP‐9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal‐based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.  相似文献   

8.
Holamine and funtumine, steroidal alkaloids with strong and diverse pharmacological activities are commonly found in the Apocynaceae family of Holarrhena. The selective anti-proliferative and cell cycle arrest effects of holamine and funtumine on cancer cells have been previously reported. The present study evaluated the anti-proliferative mechanism of action of these two steroidal alkaloids on cancer cell lines (HT-29, MCF-7 and HeLa) by exploring the mitochondrial depolarization effects, reactive oxygen species (ROS) induction, apoptosis, F-actin perturbation, and inhibition of topoisomerase-I. The apoptosis-inducing effects of the compounds were studied by flow cytometry using the APOPercentageTM dye and Caspase-3/7 Glo assay kit. The two compounds showed a significantly greater cytotoxicity in cancer cells compared to non-cancer (normal) fibroblasts. The observed antiproliferative effects of the two alkaloids presumably are facilitated through the stimulation of apoptosis. The apoptotic effect was elicited through the modulation of mitochondrial function, elevated ROS production, and caspase-3/7 activation. Both compounds also induced F-actin disorganization and inhibited topoisomerase-I activity. Although holamine and funtumine appear to have translational potential for the development of novel anticancer agents, further mechanistic and molecular studies are recommended to fully understand their anticancer effects.  相似文献   

9.
Epidemiological, preclinical and clinical studies have supported the role of selenocompounds as potential cancer chemopreventive and chemotherapeutic agents. In this study, a novel selenophene-based compound, 1,4-diselenophene-1,4-diketone (DSeD), has been synthesized by Double Friedel-Crafts reaction and identified as a potent antiproliferative agent against a panel of six human caner cell lines. Despite this potency, DSeD was relatively nontoxic toward human normal cells, HS68 fibroblasts and HK-2 kidney cells. These results suggest that DSeD possesses great selectivity between cancer and normal cells. Induction of apoptosis in human melanoma A375 cells by DSeD was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Activation of caspase-9 and depletion of mitochondrial membrane potential indicated the initiation of the mitochondria-mediated apoptosis pathway. Pretreatment of cells with general caspase inhibitor z-VAD-fmk and caspase-9 inhibitor z-LEHD-fmk significantly suppressed the cell apoptosis, demonstrating the important roles of caspase and mitochondria in DSeD-induced apoptotic cell death. Furthermore, DSeD-induced apoptosis was found independent of reactive oxygen species generation. Taken together, our results suggest that DSeD induces caspase-dependent apoptosis in A375 cells through activation of mitochondria-mediated apoptosis pathway.  相似文献   

10.
Late-stage malignant melanoma is a cancer that is refractory to current chemotherapeutic treatments. The average survival time for patients with such a diagnosis is 6 months. In general, the vast majority of anticancer drugs operate through induction of cell cycle arrest and cell death in either the DNA synthesis (S) or mitosis (M) phase of the cell cycle. Unfortunately, the same mechanisms that melanocytes possess to protect cells from DNA damage often confer resistance to drugs that derive their toxicity from S or M phase arrest. Described herein is the synthesis of a combinatorial library of potential proapoptotic agents and the subsequent identification of a class of small molecules (triphenylmethylamides, TPMAs) that arrest the growth of melanoma cells in the G1 phase of the cell cycle. Several of these TPMAs are quite potent inducers of apoptotic death in melanoma cell lines (IC(50) approximately 0.5 muM), and importantly, some TPMAs are comparatively nontoxic to normal cells isolated from the bone marrow of healthy donors. Furthermore, the TPMAs were found to dramatically reduce the level of active nuclear factor kappa-B (NFkappaB) in the cell; NFkappaB is known to be constitutively active in melanoma, and this activity is critical for the proliferation of melanoma cells and their evasion of apoptosis. Compounds that reduce the level of NFkappaB and arrest cells in the G1 phase of the cell cycle can provide insights into the biology of melanoma and may be effective antimelanoma agents.  相似文献   

11.
The overexpression of lncRNA HOTAIR can result in cancer progression through upregulation of the Akt signaling pathway. We aimed to evaluate the anticancer effects of levan polysaccharide from Erwinia herbicola on colorectal cancer cells (HT-29) and explore the role of the ROS-mediated HOTAIR/Akt signaling pathway. The HT-29 cancer cells were treated with levan either alone or along with N-acetyl-L-cysteine (NAC), as a potential antioxidant for 24 hrs and different assays including MTT, LDH, ROS, apoptosis, SOD activity, CAT activity, caspase-3 activity, qRT-PCR, and western blot analysis were performed. It was shown that levan treatment induces apparent reduction in cell viability, SOD and CAT activity, HOTAIR expression, the ratio of pAkt protein level and a significant increase in the ROS level, apoptosis induction, and caspase-3 activity, which were effectively suppressed by NAC co-treatment. These data indicated the effective antiproliferative effect of levan on colorectal cancer cells, in which downregulation of ROS-mediated HOTAIR/Akt plays an important role.  相似文献   

12.
A novel method based on fluorescence detection of hydrogel encapsulated cells in microchannels was developed for anticancer drug analysis. In this work, human hepatoma HepG2 cells and human lung epithelial A549 cells were simultaneously immobilized inside two different shapes of three-dimensional hydrogel microstructures using photolithography approach on a same array. Microarrays of living cells offer the potential for parallel detection of many cells and thereby enable high-throughput assays. Using a photolithographic setup, we investigated the prepolymer composition and crosslinking parameters that influenced cell viability inside photocrosslinked hydrogels. The viability of cells encapsulated inside hydrogel microstructures was higher than 90% under optimized photocrosslinking conditions. The cells were further cultured under stable conditions and remained viable for at least three days that were able to carry out cell-based assays. Furthermore, we studied the variation of two intracellular redox parameters (glutathione and reactive oxygen species) in anticancer drug-induced apoptosis in HepG2 and A549 cells. Two anticancer drugs exhibited distinct effects on the levels of intracellular glutathione and reactive oxygen species, indicating the selectivity of these drugs on the disturbance of redox balance within cells. The established platform provides a convenient and fast method for monitoring the effect of anticancer drugs on tumor cells, which is very useful for fundamental biomedical research.  相似文献   

13.
Beta adrenoblockers are a large class of drugs used to treat cardiovascular diseases, migraines, glaucoma and hyperthyroidism. Over the last couple of decades, the anticancer effects of these compounds have been extensively studied. However, the exact mechanism is still not known, and more detailed studies are required. The aim of our study was to evaluate the anticancer activity of beta adrenoblockers in non-small cell lung cancer cell lines A549 and H1299. In order to find the relationship with their selectivity to beta adrenoreceptors, selective (atenolol, betaxolol, esmolol, metoprolol) and non-selective (pindolol, propranolol and timolol) beta blockers were tested. The effect on cell viability was evaluated by MTT assay, and the activity on cell ability to form colonies was tested by clonogenic assay. The type of cell death was evaluated by cell double staining with Hoechst 33342 and Propidium iodide. The most active adrenoblockers against both tested cancer cell lines were propranolol and betaxolol. They completely inhibited lung cancer cell colony formation at 90% of the EC50 (half-maximal effective concentration) value. Most tested compounds induced cell death through apoptosis and necrosis. There was no correlation established between beta adrenoblocker anticancer activity and their selectivity to beta adrenoreceptors.  相似文献   

14.
The strong therapeutic potential of an organotin(IV) compound loaded in nanostructured silica (SBA‐15pSn) is demonstrated: B16 melanoma tumor growth in syngeneic C57BL/6 mice is almost completely abolished. In contrast to apoptosis as the basic mechanism of the anticancer action of numerous chemotherapeutics, the important advantage of this SBA‐15pSn mesoporous material is the induction of cell differentiation, an effect unknown for metal‐based drugs and nanomaterials alone. This non‐aggressive mode of drug action is highly efficient against cancer cells but is in the concentration range used nontoxic for normal tissue. JNK (Jun‐amino‐terminal kinase)‐independent apoptosis accompanied by the development of the melanocyte‐like nonproliferative phenotype of survived cells indicates the extraordinary potential of SBA‐15pSn to suppress tumor growth without undesirable compensatory proliferation of malignant cells in response to neighboring cell death.  相似文献   

15.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

16.
Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.  相似文献   

17.
Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30–40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.  相似文献   

18.
The aim of the study was to demonstrate canned pork as a functional meat product due to the presence of potentially anti-cancer factors, e.g., (a) bioactive peptides with potential activity against cancer cells; (b) lowering the content of sodium nitrite and with willow herb extract. In silico (for assessing the anticancer potential of peptides) and in vitro (antiproliferation activity on L-929 and CT-26 cell lines) analysis were performed, and the obtained results confirmed the bioactive potential against cancer of the prepared meat product. After 24 h of incubation with peptides obtained from meat product containing lyophilized herb extract at a concentration of 150 mg/kg, the viability of both tested cell lines was slightly decreased to about 80% and after 72 h to about 40%. On the other hand, after 72 h of incubation with the peptides obtained from the variant containing 1000 mg/kg of freeze-dried willow herb extract, the viability of intestinal cancer cells was decreased to about 40%, while, by comparison, the viability of normal cells was decreased to only about 70%.  相似文献   

19.
The present research was to investigate the effects of skimmianine (SK) in four non-small cell lung cancer (NSCLC) cells. We found that SK can significantly inhibit the growth of NSCLC cells and markedly induce apoptosis in NSCLC cells. The effects of growth inhibition and apoptosis induction were in a concentration–response relationship and caspase-dependent manner.  相似文献   

20.
Selenadiazole derivatives (SeDs) have been found to show promise in chemo‐/radiotherapy applications by activating various downstream signaling pathways. However, the functional role of SeDs on angiogenesis, which is pivotal for tumor progression and metastasis, has not yet been elucidated. In the present study, we have examined the antiangiogenic activities of SeDs and elucidated their underlying mechanisms. The results showed that the as‐synthesized SeDs not only enhanced their anticancer activities against several human cancer cells but also showed more potent inhibition on human umbilical vein endothelial cells (HUVECs). The in vitro results suggested that SeDs, especially 1 a , dose‐dependently inhibited the vascular endothelial growth factor (VEGF)‐induced cell migration, invasion, and capillary‐like structure formation of HUVECs. Compound 1 a also significantly suppressed VEGF‐induced angiogenesis in a Matrigel plug assay as part of a C57/BL6 mice assay by means of down regulation of VEGF. Furthermore, we found that 1 a significantly inhibited MCF‐7 human breast tumor growth in nude mice without severe systematic cytotoxicity. Compound 1 a was more effective in inhibiting cell proliferation and induced a much more pronounced apoptosis effect in endothelial cells than MCF‐7 cells, which implies that endothelial cells might be the primary target of 1 a . Further mechanistic studies on tumor growth inhibition effects and neovessel formation suppression demonstrated that 1 a inhibited cell viability of MCF‐7 and HUVECs by induction of cell apoptosis, accompanied by poly(adenosine diphosphate ribose)polymerase (PARP) cleavage and caspase activation. Additionally, the 1 a ‐induced antiangiogenesis effect was achieved by abolishing the VEGF‐VEGFR2‐ERK/AKT (ERK=extracellular signal–regulated kinases; AKT=protein kinease B) signal axis and enhanced the apoptosis effect by triggering reactive oxygen species (ROS)‐mediated DNA damage. Taken together, these results clearly demonstrate the antiangiogenic potency of SeDs and the underlying molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号