首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this study, we thoroughly analyzed molecular gradient generation, its stability over time, and linearity in our high-throughput drug screening microfluidic assay (HTS). These parameters greatly affect the precision and accuracy of the device’s analytical protocol. As part of the research, we developed a mathematical model of dependence of the concentration profile on the initial concentrations of active substances in reservoirs and the number of tilts, as well as the dependence of the active substance concentration profiles in the culture chambers on the concentration profile of the reference dye in the indicator chamber. The mean concentration prediction error of the proposed equations ranged from 1.4% to 2.4% for the optimized parameters of the procedure and did not increase with the incubation time. The concentration profile linearity index, Pearson’s correlation coefficient reached −0.997 for 25 device tilts. The observed time stability of the profiles was very good. The mean difference between the concentration profile after 5 days of incubation and the baseline profile was only 7.0%. The newly created mathematical relationships became part of the new HTS biochip operating protocols, which are detailed in the article.  相似文献   

2.
Homovanillic acid (HVA) and vanillylmandelic acid (VMA) are end-stage metabolites of catecholamine and are clinical biomarkers for the diagnosis of neuroblastoma. For the first time in Korea, we implemented and validated a liquid chromatography tandem mass spectrometry (LC–MS/MS) assay to measure urinary concentrations of HVA and VMA according to Clinical and Laboratory Standards Institute guidelines. Our LC–MS/MS assay with minimal sample preparation was validated for linearity, lower limit of detection (LOD), lower limit of quantification (LLOQ), precision, accuracy, extraction recovery, carryover, matrix effect, and method comparison. A total of 1209 measurements was performed to measure HVA and VMA in spot urine between October 2019 and September 2020. The relationship between the two urinary markers, HVA and VMA, was analyzed and exhibited high agreement (89.1% agreement, kappa’s k = 0.6) and a strong correlation (Pearson’s r = 0.73). To our knowledge, this is the first study to utilize LC–MS/MS for simultaneous quantitation of spot urinary HVA and VMA and analyze the clinical application of both markers on a large scale for neuroblastoma patients.  相似文献   

3.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient’s daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer’s disease.  相似文献   

4.
Drug repurposing is an emerging strategy, which uses already approved drugs for new medical indications. One such drug is gemcitabine, an anticancer drug that only works at high doses since a portion is deactivated in the serum, which causes toxicity. In this review, two methods were discussed that could improve the anticancer effect of gemcitabine. The first is a chemical modification by conjugation with cell-penetrating peptides, namely penetratin, pVEC, and different kinds of CPP6, which mostly all showed an increased anticancer effect. The other method is combining gemcitabine with repurposed drugs, namely itraconazole, which also showed great cancer cell inhibition growth. Besides these two strategies, physiologically based pharmacokinetic models (PBPK models) are also the key for predicting drug distribution based on physiological data, which is very important for personalized medicine, so that the correct drug and dosage regimen can be administered according to each patient’s physiology. Taking all of this into consideration, it is believed that gemcitabine can be repurposed to have better anticancer effects.  相似文献   

5.
This study investigated the effect of sweet potato starch (SPS) and konjac glucomannan (KGM) on the textural, color, sensory, rheological properties, and microstructures of plant-based pork rinds. Plant-based gels were prepared using mixtures of soy protein isolate (SPI), soy oil, and NaHCO3 supplemented with different SPS and KGM concentrations. The texture profile analysis (TPA) results indicated that the hardness, cohesiveness, and chewiness of the samples improved significantly after appropriate SPS and KGM addition. The results obtained via a colorimeter showed no significant differences were found in lightness (L*) between the samples and natural pork rinds after adjusting the SPS and KGM concentrations. Furthermore, the rheological results showed that adding SPS and KGM increased both the storage modulus (G’) and loss modulus (G’’), indicating a firmer gel structure. The images obtained via scanning electron microscopy (SEM) showed that the SPS and KGM contributed to the formation of a more compact gel structure. A mathematical model allowed for a more objective sensory evaluation, with the 40% SPS samples and the 0.4% KGM samples being considered the most similar to natural pork rinds, which provided a comparable texture, appearance, and mouthfeel. This study proposed a possible schematic model for the gelling mechanism of plant-based pork rinds: the three-dimensional network structures of the samples may result from the interaction between SPS, SPI, and soybean oil, while the addition of KGM and NaHCO3 enabled a more stable gel structure.  相似文献   

6.
Metabolic fingerprints of biofluids encode diverse diseases and particularly urine detection offers complete non‐invasiveness for diagnostics of the future. Present urine detection affords unsatisfactory performance and requires advanced materials to extract molecular information, due to the limited biomarkers and high sample complexity. Herein, we report plasmonic polymer@Ag for laser desorption/ionization mass spectrometry (LDI‐MS) and sparse‐learning‐based metabolic diagnosis of kidney diseases. Using only 1 μL of urine without enrichment or purification, polymer@Ag afforded urine metabolic fingerprints (UMFs) by LDI‐MS in seconds. Analysis by sparse learning discriminated lupus nephritis from various other non‐lupus nephropathies and controls. We combined UMFs with urine protein levels (UPLs) and constructed a new diagnostic model to characterize subtypes of kidney diseases. Our work guides urine‐based diagnosis and leads to new personalized analytical tools for other diseases.  相似文献   

7.
Since COVID-19 has affected global public health, there has been an urgency to find a solution to limit both the number of infections, and the aggressiveness of the disease once infected. The main characteristic of this infection is represented by a strong alteration of the immune system which, day by day, increases the risk of mortality, and can lead to a multiorgan dysfunction. Because nutritional profile can influence patient’s immunity, we focus our interest on resveratrol, a polyphenolic compound known for its immunomodulating and anti-inflammatory properties. We reviewed all the information concerning the different roles of resveratrol in COVID-19 pathophysiology using PubMed and Scopus as the main databases. Interestingly, we find out that resveratrol may exert its role through different mechanisms. In fact, it has antiviral activity inhibiting virus entrance in cells and viral replication. Resveratrol also improves autophagy and decreases pro-inflammatory agents expression acting as an anti-inflammatory agent. It regulates immune cell response and pro-inflammatory cytokines and prevents the onset of thrombotic events that usually occur in COVID-19 patients. Since resveratrol acts through different mechanisms, the effect could be enhanced, making a totally natural agent particularly effective as an adjuvant in anti COVID-19 therapy.  相似文献   

8.
A fast melt tablet (FMT) is well regarded as an alternative delivery system that might help resolve a patient’s non-compliance issue. The main objective of this study was to develop a cocoa butter-based FMT. Additives, namely 5–15% of PEG 6000, beeswax, paraffin wax, and corn starch, were incorporated into the cocoa butter-based FMT to study the effects of these additives with the physical characteristic of a cocoa butter FMT. An optimum-based formulation was chosen according to the desired hardness and disintegration time and the taste masking property achieved with the model drug—dapoxetine. The analysis demonstrated that incorporating beeswax (15%) and paraffin wax (15%) could prolong the disintegration time by at least two-fold. On the contrary, the presence of corn starch was found to cause an increase in the hardness and reduction of the disintegration time. The disintegration mechanism might be presumed due to the synergistic effect of starch swelling and cocoa butter melting. The hardness value and in vitro disintegration time of the optimum formulation were recorded at 2.93 ± 0.22 kg and 151.67 ± 6.98 s. In terms of dissolution, 80% of dapoxetine was released within 30 min and the dissolution profile was comparable to the innovator product. The formulation was palatable and stable for at least 1 year. The exposure of the FMT formulation at 30 °C for 12 months was reported to be stable. Along with the sound palatability profile and high drug load capacity, the current formulation possesses the desired characteristics to be scaled up and marketed.  相似文献   

9.
Green honey is exclusively available on the island of Banggi in Sabah, and its uniqueness sees the commodity being sold at a high market price. Therefore, green honey is prone to adulteration by unscrupulous individuals, possibly compromising the health of those consuming this food commodity for its curative properties. Moreover, an established standard for reducing sugar in green honey is unavailable. Ipso facto, the study aimed to profile green honey’s physical and chemical properties, such as its pH, moisture content, free acidity, ash content, electroconductivity, hydroxymethylfurfural (HMF), total phenolic content, total flavonoid content, DPPH, colour, total sugar content, total protein content, and heavy metals as well as volatile organic compounds, the data of which are profoundly valuable in safeguarding consumers’ safety while providing information for its quality certification for local consumption and export. The results revealed that the honey’s physicochemical profile is comparable to other reported kinds of honey. The honey’s naturally green colour is because of the chlorophyll from the nectar from various flowers on the island. The raw honey showed free acidity between 28 and 33 Meq/100 g, lower than the standard’s 50 Meq/100 g. The hydroxymethylfurfural content is the lowest compared to other reported honey samples, with the total phenolic content between 16 and 19 mg GAE/100 g. The honey’s reducing sugar content is lower (~37.9%) than processed ones (56.3%) because of water removal. The protein content ranged from 1 to 2 gm/kg, 4- to 6-fold and 2-fold higher than local and manuka honey, respectively. The exceptionally high content of trans-4-hydroxyproline in raw honey is its source of collagen and other healing agents. Interestingly, low levels of arsenic, lead, nickel, cadmium, copper, and cobalt were detected in the honey samples, presumably due to their subterranean hives. Nevertheless, the honey is fit for general consumption as the concentrations were below the maxima in the Codex Alimentarius Commission of 2001.  相似文献   

10.
Fused filament fabrication (FFF) is a process used to manufacture oral forms adapted to the needs of patients. Polyethylene oxide (PEO) filaments were produced by hot melt extrusion (HME) to obtain a filament suitable for the production of amiodarone hydrochloride oral forms by FFF 3D printing. In order to produce personalized oral forms adapted to the patient characteristics, filaments used by FFF must be controlled in terms of mass homogeneity along filament. This work highlights the relation between filament mass homogeneity and its diameter. This is why the impact of filler excipients physical properties was studied. It has been showed that the particle’s size distribution of the filler can modify the filament diameter variability which has had an impact on the mass of oral forms produced by FFF. Through this work it was shown that D-Sorbitol from Carlo Erba allows to obtain a diameter variability of less than 2% due to its unique particle’s size distribution. Using the filament produced by HME and an innovating calibration method based on the filament length, it has been possible to carry out three dosages of 125 mg, 750 mg and 1000 mg by 3D printing with acceptable mass uniformity.  相似文献   

11.
The complex nature of biofluids demands efficient, sensitive and high-resolution analytical methodologies to examine how the 'metabolic fingerprint' changes during disease. This paper describes how sulphated beta-cyclodextrin-modified micellar electrokinetic capillary chromatography (SbetaCD-MECC) has been combined with data alignment analysis and may prove a useful new tool in urine profiling, allowing for separation of over 80 urinary analytes in under 25 min. The optimised and validated SbetaCD-MECC methodology combined with data alignment analysis provides rapid identification of 'mismatches' between urine profiles which are not easily detected with the naked eye as well as a 'similarity score' which indicates the total sum of differences between one profile and another. The combination of SbetaCD-MECC with data alignment software should prove a useful alternative tool in metabonomic studies for rapid comparison of urine profiles.  相似文献   

12.
The parents’ addictions and eating habits have a significant influence on the child’s growth. The first stool of a newborn baby provides a large amount of information about xenobiotics transmitted by the mother’s body. The analytical technique used in the study is ion chromatography with pulsed amperometric detection (IC-PAD). The biological samples, which were obtained from women staying in a maternity ward and their partners, revealed cyanide concentrations in urine samples spanning 1.30–25.3 μg L−1. Meanwhile, the results of the meconium samples were in the range of 1.54 μg L−1 to 24.9 μg L−1. Under the optimized chromatographic conditions, the IC-PAD system exhibited satisfactory repeatability (R < 3%, n = 3) and good linearity in the range of 1–100 μg L−1. Thus, it proved to be an effective tool for monitoring trace cyanide concentration in a series of human body fluid matrices, including meconium. Based on the literature review, this is the first application of the IC-PAD analytical technique for the determination of cyanide ions in meconium samples.  相似文献   

13.
The aim of this study was to determine the effect of adding calcium compounds to processed goat’s milk, and on the properties of acid rennet goat’s milk gels, which are a middle product obtained in the manufacture of acid rennet cheese. The properties of the gels directly affect the quality of acid rennet cheeses. The analysis of raw goat’s milk was carried out, then acid rennet gels were produced with the addition of six different calcium compounds (chloride, citrate, bisglycinate, gluconate, lactate, and carbonate). The dynamics of milk fermentation were performed by monitoring the pH value of milk during acidification. The pH, syneresis, color, and texture profile were determined in the formulated acid rennet gels. An organoleptic evaluation was also performed. The study demonstrated that, not only calcium chloride, but also calcium citrate, gluconate, lactate, bisglycinate, and calcium carbonate could be used in the production of goat’s milk acid rennet gels, or the middle product in the manufacture of acid rennet curd cheese from goat’s milk. Notably, the addition of citrate, bisglycinate, and calcium carbonate in doses of 20 mg Ca 100 g−1 most effectively reduced syneresis compared to the control sample by 4.76% (citrate), 7.85% (bisglycinate), and 10.28% (carbonate). The hardness of the control gels ranged from 2.35 N to 2.99 N. The addition of chloride, citrate, gluconate, lactate, and calcium carbonate to the milk improved the acid rennet gel’s hardness. The addition of 20 mg Ca 100 g−1 as gluconate increased the hardness the most (3.61 N). When increasing the calcium dosage in the form of all compounds, there was a tendency to increase the gel’s springiness. The addition of chloride, citrate, and bisglycinate to milk did not result in a darkening of the gel’s color. The addition of calcium compounds mostly reduced the intensity of goatish taste and odor. Calcium gluconate, in particular, reduced the goatish taste the most, a taste which is not always acceptable by the consumers.  相似文献   

14.
Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore has high tissue compatibility for use in medication. Because of HA’s biological safety and water retention properties, it has many ophthalmology-related applications, such as in intravitreal injection, dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and quantification of HA is a critical topic. This review article discusses current methods for analyzing HA. Contact lenses have become a widely used medical device, with HA commonly used as an additive to their production material, surface coating, and multipurpose solution. HA molecules on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses applications of HA in ophthalmology.  相似文献   

15.
Damage of blood–brain barrier is a common result of traumatic brain injury. This damage can open the blood–brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood–brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple‐quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10–8000 ng/mL for the biofluids. The intra‐ and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid/AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood–brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury.  相似文献   

16.
(1) Recently, metabolic profiling of the tissue in the native state or extracts of its metabolites has become increasingly important in the field of metabolomics. An important factor, in this case, is the presence of blood in a tissue sample, which can potentially lead to a change in the concentration of tissue metabolites and, as a result, distortion of experimental data and their interpretation. (2) In this paper, the metabolomic profiling based on NMR spectroscopy was performed to determine the effect of blood contained in the studied samples of brain tissue on their metabolomic profile. We used 13 male laboratory CD-1® IGS mice for this study. The animals were divided into two groups. The first group of animals (n = 7) was subjected to the perfusion procedure, and the second group of animals (n = 6) was not perfused. The brain tissues of the animals were homogenized, and the metabolite fraction was extracted with a water/methanol/chloroform solution. Samples were studied by high-frequency 1H-NMR spectroscopy with subsequent statistical data analysis. The group comparison was performed with the use of the Student’s test. We identified 36 metabolites in the brain tissue with the use of NMR spectroscopy. (3) For the major set of studied metabolites, no significant differences were found in the brain tissue metabolite concentrations in the native state and after the blood removal procedure. (4) Thus, it was shown that the presence of blood does not have a significant effect on the metabolomic profile of the brain in animals without pathologies.  相似文献   

17.
The purpose of this review is to present an overview of roadside drug testing, driving enforcement, and drunk/drug driving detection around the world. Drunk and drug driving is a severe problem, not only in the UAE, but also around the world. This has important implications for road safety as drunk or drug driving may increase the chances of a driver’s involvement in a road crash when compared to a drug-free driver. Recently, due to increases in drug-impaired drivers’ crash involvement, many mobile roadside drug testing devices have been introduced to the market. These devices use oral fluid, urine or blood matrices. These are on-the-spot tests, which are easy to use and are applied by law enforcement agencies and the public. Law enforcement agencies most commonly use oral fluid to detect the presence of illicit drugs in drivers. This review discusses all the available devices in the market used by the authorities. It also describes the type of drugs widely abused by drivers along with behavioral testing methods. The different types of matrices used for roadside drug testing are also evaluated. Sample collection, storage, and pre-treatment methods are discussed, followed by the confirmatory analysis of positive samples. This article will significantly help law enforcement agencies compare and evaluate all the reliable roadside testing devices and new emerging confirmatory devices available to them in the market. This will help them make an informed decision on which device to adapt to their individual needs.  相似文献   

18.
Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother’s own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.  相似文献   

19.
Obesity is a chronic disease with increasing cases among children and adolescents. Melanocortin 4 receptor (MC4R) is a G protein-coupled transporter involved in solute transport, enabling it to maintain cellular homeostasis. MC4R mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. A number of mutations have been reported in MC4R that are responsible for causing obesity and related complications. Delineating these mutations and analyzing their effect on MC4R’s structure will help in the clinical intervention of the disease condition as well as designing potential drugs against it. Sequence-based pathogenicity and structure-based protein stability analyses were conducted on naturally occurring variants. We used computational tools to analyze the conservation of these mutations on MC4R’s structure to map the structural variations. Detailed structural analyses were carried out for the active site mutations (i.e., D122N, D126Y, and S188L) and their influence on the binding of calcium and the agonist or antagonist. We performed molecular dynamics (MD) simulations of the wild-type and selected mutations to delineate the conformational changes, which provided us with possible reasons for MC4R’s instability in these mutations. This study provides insight into the potential direction toward understanding the molecular basis of MC4R dysfunction in disease progression and obesity.  相似文献   

20.
Solid wettability is especially important for biomaterials and implants in the context of microbial adhesion to their surfaces. This adhesion can be inhibited by changes in biomaterial surface roughness and/or its hydrophilic–hydrophobic balance. The surface hydrophilic–hydrophobic balance can be changed by the specifics of the surface treatment (proper conditions of surface preparation) or adsorption of different substances. From the practical point of view, in systems that include biomaterials and implants, the adsorption of compounds characterized by bacteriostatic or bactericidal properties is especially desirable. Substances that are able to change the surface properties of a given solid as a result of their adsorption and possess at least bacteriostatic properties include sucrose ester surfactants. Thus, in our studies the analysis of a specific surface treatment effect (proper passivation conditions) on a biomaterial alloy’s (Ti6Al4V ELI, Grade 23) properties was performed based on measurements of the contact angles of water, formamide and diiodomethane. In addition, the changes in the studied solid surface’s properties resulting from the sucrose monodecanoate (SMD) and sucrose monolaurate (SML) molecules’ adsorption at the solid–water interface were also analyzed. For the analysis, the values of the contact angles of aqueous solutions of SMD and SML were measured at 293 K, and the surface tensions of the aqueous solutions of studied surfactants measured earlier were tested. From the above-mentioned tests, it was found that water environment significantly influences the components and parameters of Ti6Al4V ELI’s surface tension. It also occurred that the addition of both SMD and SML to water (separately) caused a drop in the water contact angle on Ti6Al4V ELI’s surface. However, the sucrose monolaurate surfactant is characterized by a slightly better tendency towards adsorption at the solid–water interface in the studied system compared to sucrose monodecanoate. Additionally, based on the components and parameters of Ti6Al4V ELI’s surface tension calculated from the proper values of components and parameters of model liquids, it was possible to predict the wettability of Ti6Al4V ELI using the aqueous solutions of SMD and SML at various concentrations in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号