首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Breast cancer cell proliferation and migration are inhibited by naturally extracted trans-(−)-kusunokinin. However, three additional enantiomers of kusunokinin have yet to be investigated: trans-(+)-kusunokinin, cis-(−)-isomer and cis-(+)-isomer. According to the results of molecular docking studies of kusunokinin isomers on 60 breast cancer-related proteins, trans-(−)-kusunokinin was the most preferable and active component of the trans-racemic mixture. Trans-(−)-kusunokinin targeted proteins involved in cell growth and proliferation, whereas the cis-(+)-isomer targeted proteins involved in metastasis. Trans-(−)-kusunokinin targeted CSF1R specifically, whereas trans-(+)-kusunokinin and both cis-isomers may have bound AKR1B1. Interestingly, the compound’s stereoisomeric effect may influence protein selectivity. CSF1R preferred trans-(−)-kusunokinin over trans-(+)-kusunokinin because the binding pocket required a ligand planar arrangement to form a π-π interaction with a selective Trp550. Because of its large binding pocket, EGFR exhibited no stereoselectivity. MD simulation revealed that trans-(−)-kusunokinin, trans-(+)-kusunokinin and pexidartinib bound CSF1R differently. Pexidartinib had the highest binding affinity, followed by trans-(−)-kusunokinin and trans-(+)-kusunokinin, respectively. The trans-(−)-kusunokinin-CSF1R complex was found to be stable, whereas trans-(+)-kusunokinin was not. Trans-(±)-kusunokinin, a potential racemic compound, could be developed as a selective CSF1R inhibitor when combined.  相似文献   

2.
Phytophenol dimerization, which is a radical-mediated coupling reaction, plays a critical role in many fields, including lignin biosynthesis. To understand the reaction, 2,2-diphenyl-1-picrylhydrazyl radical was used to initiate a series of phytophenol dimerization reactions in methanol. The products were identified using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) analysis in situ. The identified products mainly included biphenols, magnolol, honokiol, gingerol 6,6′-dimers, 3,6-dimethoxylcatechol β,β′ dimer, euphorbetin, bis-eugenol, dehydrodiisoeugenol, trans-ε-viniferin, (+) pinoresinol, and (−) pinoresinol. Structure–function relationship analysis allowed four basic rules to be defined: meta-excluded, C–C bonding domination, ortho-diOH co-activation, and exocyclic C=C involvement. The exocyclic C=C involvement, however, required conjugation with the phenolic core and the para-site of the -OH group, to yield a furan-fused dimer with two chiral centers. Computational chemistry indicated that the entire process was completed via a radical coupling reaction and an intramolecular conjugate addition reaction. Similar results were also found for the horseradish peroxidase (HRP)-catalyzed coniferyl alcohol dimerization, which produced (+) and (−) pinoresinols (but no (−) epipinoresinol), suggesting that the HRP-catalyzed process was essentially an exocyclic C=C-involved phytophenol dimerization reaction. The reaction was highly diastereoselective. This was attributed to the intramolecular reaction, which prohibited Re-attack. The four basic rules and diastereoselectivity can explain and even predict the main products in various chemical and biological events, especially oxidase-catalyzed lignin cyclization.  相似文献   

3.
Ying Y  Kim H  Hong J 《Organic letters》2011,13(4):796-799
Both 2,6-cis- and 2,6-trans-piperidines were prepared from common substrates through organocatalytic aza-Michael reactions promoted by the gem-disubstituent effect in conjunction with dithiane coupling reactions. The organocatalytic aza-Michael reaction enabled a facile synthesis of (+)-myrtine and (-)-epimyrtine from a common substrate.  相似文献   

4.
Dandelion flower-like micelles (DFMs) were prepared by self-assembly of polycaprolactone (PCL) functionalized surface cross-linked micelles (SCMs). Upon reductive stimuli, the SCMs can be released from the DFMs by non-Brownian motion at an average speed of 19.09 μm s−1. Similar to the property of dandelion flowers dispersing their seeds over a long distance, the DFMs demonstrated enhanced multicellular tumor spheroid (MTS) penetration, a useful property in the treatment of many diseases including cancer, infection-of-biofilm diseases and ocular problems.

Dandelion flower-like micelles (DFMs) can release surface cross-linked micelles (SCMs) by non-Brownian motion at an average speed of 19.09 μm s−1 upon reductive stimuli.  相似文献   

5.
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (−)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with β and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (−)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of β-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products.  相似文献   

6.
Biothiols are extremely powerful antioxidants that protect cells against the effects of oxidative stress. They are also considered relevant disease biomarkers, specifically risk factors for cardiovascular disease. In this paper, a new procedure for the simultaneous determination of human serum albumin and low-molecular-weight thiols in plasma is described. The method is based on the pre-column derivatization of analytes with a thiol-specific fluorescence labeling reagent, monobromobimane, followed by separation and quantification through reversed-phase high-performance liquid chromatography with fluorescence detection (excitation, 378 nm; emission, 492 nm). Prior to the derivatization step, the oxidized thiols are converted to their reduced forms by reductive cleavage with sodium borohydride. Linearity in the detector response for total thiols was observed in the following ranges: 1.76–30.0 mg mL−1 for human serum albumin, 0.29–5.0 nmol mL−1 for α-lipoic acid, 1.16–35 nmol mL−1 for glutathione, 9.83–450.0 nmol mL−1 for cysteine, 0.55–40.0 nmol mL−1 for homocysteine, 0.34–50.0 nmol mL−1 for N-acetyl-L-cysteine, and 1.45–45.0 nmol mL−1 for cysteinylglycine. Recovery values of 85.16–119.48% were recorded for all the analytes. The developed method is sensitive, repeatable, and linear within the expected ranges of total thiols. The devised procedure can be applied to plasma samples to monitor biochemical processes in various pathophysiological states.  相似文献   

7.
An organocatalytic method for the modular synthesis of diverse N-aryl and N-alkyl azaheterocycles (indoles, oxindoles, benzimidazoles, and quinoxalinediones) is reported. The method employs a small-ring organophosphorus-based catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide) and a hydrosilane reductant to drive the conversion of ortho-functionalized nitroarenes into azaheterocycles through sequential intermolecular reductive C−N cross coupling with boronic acids, followed by intramolecular cyclization. This method enables the rapid construction of azaheterocycles from readily available building blocks, including a regiospecific approach to N-substituted benzimidazoles and quinoxalinediones.  相似文献   

8.
The catalytic enantioselective synthesis of (+)-curcuphenol is described herein. This approach involves the use of an organocatalytic alkylation of m-anisidine, a diazotation/Sandmeyer reaction of the amine and a Negishi-type coupling with dimethylzinc. This versatile strategy allows for the rapid synthesis of other members of this class of natural products.  相似文献   

9.
High performance liquid chromatography (HPLC) for catechins and related compounds in Miang (traditional Lanna fermented tea leaf) was developed to overcome the matrices during the fermentation process. We investigated a variety of columns and elution conditions to determine seven catechins, namely (+)-catechin, (−)-gallocatechin, (−)-epigallocatechin, (−)-epicatechin, (−)-epigallocatechin gallate, (−)-gallocatechin gallate, (−)-epicatechin gallate, as well as gallic acid and caffeine, resulting in the development of reproducible systems for analyses that overcome sample matrices. Among the three reversed-phase columns, column C (deactivated, with extra dense bonding, double endcapped monomeric C18, high-purity silica at 3.0 mm × 250 mm and a 5 µm particle size) significantly improved the separation between Miang catechins in the presence of acid in the mobile phase within a shorter analysis time. The validation method showed effective linearity, precision, accuracy, and limits of detection and quantitation. The validated system was adequate for the qualitative and quantitative measurement of seven active catechins, including gallic acid and caffeine in Miang, during the fermentation process and standardization of Miang extracts. The latter contain catechins and related compounds that are further developed into natural active pharmaceutical ingredients (natural APIs) for cosmeceutical and nutraceutical products.  相似文献   

10.
Enantioselective organocatalytic reductive amination   总被引:1,自引:0,他引:1  
The first enantioselective organocatalytic reductive amination reaction has been accomplished. The development of a new chiral phosphoric acid catalyst has provided a convenient strategy for the enantioselective construction of protected primary amines and provided a highly stereoselective method for the reductive amination of heterocyclic amines. A diverse spectrum of ketone and amine substrates can be accommodated in high yield and excellent enantioselectivity. This new protocol realizes a key benefit of reductive amination versus imine reduction, in that ketimines derived from alkyl-alkyl ketones are unstable to isolation, a fundamental limitation that is comprehensively bypassed using this direct organocatalytic reductive amination.  相似文献   

11.
Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au−S bond and partially stabilized by the Au⋅⋅⋅H−N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H−S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N−H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H−S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.  相似文献   

12.
An organocatalytic enantioselective radical reaction of potassium alkyltrifluoroborates, DABCO·(SO2)2 and α,β-unsaturated carbonyl compounds under photoinduced conditions is developed, which provides an efficient pathway for the synthesis of chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee). Aside from α,β-unsaturated carbonyl compounds with auxiliary groups, common chalcone substrates are also well compatible with this organocatalytic system. This method proceeds through an organocatalytic enantioselective radical sulfonylation under photoinduced conditions, and represents a rare example of asymmetric transformation involving sulfur dioxide insertion.

A photoinduced organocatalytic enantioselective radical reaction is developed, affording chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee).  相似文献   

13.
An organocatalytic method for the modular synthesis of diverse N‐aryl and N‐alkyl azaheterocycles (indoles, oxindoles, benzimidazoles, and quinoxalinediones) is reported. The method employs a small‐ring organophosphorus‐based catalyst (1,2,2,3,4,4‐hexamethylphosphetane P‐oxide) and a hydrosilane reductant to drive the conversion of ortho‐functionalized nitroarenes into azaheterocycles through sequential intermolecular reductive C?N cross coupling with boronic acids, followed by intramolecular cyclization. This method enables the rapid construction of azaheterocycles from readily available building blocks, including a regiospecific approach to N‐substituted benzimidazoles and quinoxalinediones.  相似文献   

14.
The goal of the work was to study changes in the activity of the angiotensin-converting enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperitoneal injection of stereoisomers of catechin and gallate. The activity of ACE in the aorta sections was determined by measuring the hydrolysis of hippuryl-l-histidyl-l-leucine. The production of ROS in the aorta sections was estimated from the oxidation of dichlorodihydrofluorescein. The time and dose dependences of the effect of catechin stereoisomers and gallate on ACE activity and ROS production in the aorta were studied. It was shown that (+)-catechin and gallate increased the ACE activity and ROS production, and (−)-catechin and (−)-epicatechin did not influence these parameters. The doses of (+)-catechin and gallate that increased the ACE activity to a half-maximal value (AD50) were 0.04 and 0.03 µg/kg, respectively. Fucoidin, a blocker of leukocyte adhesion to the endothelium, reduced the ACE activity to the control level in the aortas of (+)-catechin-treated rats.  相似文献   

15.
Optically active five-membered cyclic nitrones are readily obtained in a one-pot procedure via the organocatalytic Michael addition of aldehydes to nitroolefins and in situ reductive cyclization. Application of the methodology to the synthesis of tricyclic compounds through intramolecular 1,3-dipolar cycloaddition reactions (DFT calculations have also been performed) is also demonstrated. All the reactions were carried out in water as a solvent and excellent ee values (ee >99%) were obtained.  相似文献   

16.
Three syntheses of the architecturally complex, cytotoxic marine macrolide (+)-spongistatin 1 (1) are reported. Highlights of the first-generation synthesis include: use of a dithiane multicomponent linchpin coupling tactic for construction of the AB and CD spiroketals, and their union via a highly selective Evans boron-mediated aldol reaction en route to an ABCD aldehyde; introduction of the C(44)-C(51) side chain via a Lewis acid-mediated ring opening of a glucal epoxide with an allylstannane to assemble the EF subunit; and final fragment union via Wittig coupling of the ABCD and EF subunits to form the C(28)-C(29) olefin, followed by regioselective Yamaguchi macrolactonization and global deprotection. The second- and third-generation syntheses, designed with the goal of accessing 1 g of (+)-spongistatin 1 (1), maintain both the first-generation strategy for the ABCD aldehyde and final fragment union, while incorporating two more efficient approaches for construction of the EF Wittig salt. The latter combine the original chelation-controlled dithiane union of the E- and F-ring progenitors with application of a highly efficient cyanohydrin alkylation to append the F-ring side chain, in conjunction with two independent tactics to access the F-ring pyran. The first F-ring synthesis showcases a Petasis-Ferrier union/rearrangement protocol to access tetrahydropyrans, permitting the preparation of 750 mg of the EF Wittig salt, which in turn was converted to 80 mg of (+)-spongistatin 1, while the second F-ring strategy, incorporates an organocatalytic aldol reaction as the key construct, permitting completion of 1.009 g of totally synthetic (+)-spongistatin 1 (1). A brief analysis of the three syntheses alongside our earlier synthesis of (+)-spongistatin 2 is also presented.  相似文献   

17.
Four stereoisomeric monoether derivatives, based on axially chiral (R)- or (S)-BINOL bearing a chiral (+)- or (−)-neomenthyloxy group were synthesised and fully characterised by NMR spectroscopy and X-ray crystallography. The respective tris-monophosphites were thereof prepared and fully characterised. The coordination ability of the new bulky phosphites with Rh(CO)2(acac), was attested by 31P NMR, which presented a doublet in the range of δ = 120 ppm, with a 1J(103Rh-31P) coupling constant of 290 Hz. The new tris-binaphthyl phosphite ligands were further characterised by DFT computational methods, which allowed us to calculate an electronic (CEP) parameter of 2083.2 cm−1 and an extremely large cone angle of 345°, decreasing to 265° upon coordination with a metal atom. Furthermore, the monophosphites were applied as ligands in rhodium-catalysed hydroformylation of styrene, leading to complete conversions in 4 h, 100% chemoselectivity for aldehydes and up to 98% iso-regioselectivity. The Rh(I)/phosphite catalytic system was also highly active and selective in the hydroformylation of disubstituted olefins, including (E)-prop-1-en-1-ylbenzene and prop-1-en-2-ylbenzene.  相似文献   

18.
A practical and novel organocatalytic chemo- and enantioselective process for the cascade synthesis of highly substituted 2-alkyl-cyclohexane-1,3-diones and Wieland-Miescher (W-M) ketone analogs is presented via reductive alkylation as a key step. First time, we developed the one-step alkylation of dimedone and 1,3-cyclohexanedione with aldehydes and Hantzsch ester through an organocatalytic reductive alkylation strategy. Direct combination of l-proline-catalyzed cascade Knoevenagel/hydrogenation and cascade Robinson annulation of CH acids (dimedone and 1,3-cyclohexanedione), aldehydes, Hantzsch ester, and methyl vinyl ketone furnished the highly functionalized W-M ketone analogues in good to high yields and with excellent enantioselectivities. Many of the reductive alkylation products show a direct application in pharmaceutical chemistry.  相似文献   

19.
Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), β-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, β-pinene, and borneol were present primarily as (−)-enantiomers (100% enantiomeric excess (ee) for (−)-α-pinene and (−)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (−)-β-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (−)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (−)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (−)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (−)-borneol as a novel modulator of human neutrophil function.  相似文献   

20.
A novel, fast and sensitive enantioselective HPLC assay with a new core–shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(−)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1–450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(−)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(−)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core–shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号