首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bruton’s tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using “BTK” and “BTK inhibitors” as keywords.  相似文献   

2.
A key hallmark of many aggressive cancers is accelerated glucose metabolism. The enzymes that catalyze the first step of glucose metabolism are hexokinases. Elevated levels of hexokinase 2 (HK2) are found in cancer cells, but only in a limited number of normal tissues. Metabolic reprogramming of cancer cells using the energy blocker 3-bromopyruvate (3-BP), which inhibits HK2, has the potential to provide tumor-specific anticancer agents. However, the unique structural and functional characteristics of mitochondria prohibit selective subcellular targeting of 3-BP to modulate the function of this organelle for therapeutic gain. A mitochondria-targeted gold nanoparticle (T-3-BP-AuNP), decorated with 3-BP and delocalized lipophilic triphenylphosphonium cations to target the mitochondrial membrane potential (Δψ m), was developed for delivery of 3-BP to cancer cell mitochondria by taking advantage of the higher Δψ m in cancer cells compared to normal cells. In vitro studies demonstrated an enhanced anticancer activity of T-3-BP-AuNPs compared to the non-targeted construct NT-3-BP-AuNP or free 3-BP. The anticancer activity of T-3-BP-AuNPs was further enhanced upon laser irradiation by exciting the surface plasmon resonance band of AuNP and thereby utilizing a combination of 3-BP chemotherapeutic and AuNP photothermal effects. The lower toxicity of T-3-BP-NPs in normal mesenchymal stem cells indicated that these NPs preferentially kill cancer cells. T-3-BP-AuNPs showed an enhanced ability to modulate cancer cell metabolism by inhibiting glycolysis as well as demolishing mitochondrial oxidative phosphorylation. Our findings demonstrate that concerted chemo-photothermal treatment of glycolytic cancer cells with a single NP capable of targeting mitochondria, mediating simultaneous release of a glycolytic inhibitor and photothermal ablation, may have promise as a new anticancer therapy.  相似文献   

3.
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.  相似文献   

4.
Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the “double-locked” strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-β-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of β-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first “key”) and pH (second “key”), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.  相似文献   

5.
Photosensitizing agents are essential for precise and efficient photodynamic therapy (PDT). However, most of the conventional photosensitizers still suffer from limitations such as aggregation-caused quenching (ACQ) in physiological environments and toxic side-effects on normal tissues during treatment, leading to reduced therapeutic efficacy. Thus, integrating excellent photophysical properties and accurate carcinoma selectivity in a photosensitizer system remains highly desired. Herein, a “dual lock-and-key” supramolecular photosensitizer BIBCl–PAE NPs for specific and enhanced cancer therapy is reported. BIBCl–PAE NPs are constructed by encapsulating a rationally designed glutathione (GSH)-activatable photosensitizer BIBCl in a pH-responsive diblock copolymer. In normal tissues, BIBCl is “locked” in the hydrophobic core of the polymeric micelles due to ACQ. Under the “dual key” activation of low pH and high levels of GSH in a tumor microenvironment, the disassembly of micelles facilitates the reaction of BIBCl with GSH to release water-soluble BIBSG with ideal biocompatibility, enabling the highly efficient PDT. Moreover, benefiting from the Förster resonance energy transfer effect of BIBSG, improved light harvesting ability and 1O2 production are achieved. In vitro and vivo experiments have demonstrated that BIBCl–PAE NPs are effective in targeting and inhibiting carcinoma. BIBCl–PAE NPs show superior anticancer efficiency relative to non-activatable controls.

The “dual lock-and-key” supramolecular photosensitizers enable specific and enhanced photodynamic therapy (PDT).  相似文献   

6.
Corchorus olitorius is a common, leafy vegetable locally known as “Saluyot” in the Philippines. Several studies have reported on its various pharmacological properties, such as antioxidant, anti-inflammatory, analgesic, and anticancer properties. However, little is known about its effects on angiogenesis. This study aimed to evaluate the anticancer properties, such as the antiproliferative, anti-angiogenic, and antitumor activities, of the C. olitorius aqueous extract (CO) and its bioactive compounds, chlorogenic acid (CGA) and isoquercetin (IQ), against human melanoma (A-375), gastric cancer (AGS), and pancreatic cancer (SUIT-2), using in vitro and in ovo biological assays. The detection and quantification of CGA and IQ in CO were achieved using LC-MS/MS analysis. The antiproliferative, anti-angiogenic, and antitumor activities of CO, CGA, and IQ against A-375, AGS, and SUIT-2 cancer cell lines were evaluated using MTT and CAM assays. CGA and IQ were confirmed to be present in CO. CO, CGA, and IQ significantly inhibited the proliferation of A-375, AGS, and SUIT-2 cancer cells in a dose-dependent manner after 48 h of treatment. Tumor angiogenesis (hemoglobin levels) of A-375 and AGS tumors was significantly inhibited by CO, CGA, IQ, and a CGA–IQ combination. The growth of implanted A-375 and AGS tumors was significantly reduced by CO, CGA, IQ, and a CGA–IQ combination, as measured in tumor weight. Our investigation provides new evidence to show that CO has promising anticancer effects on various types of human cancer cells. CO and its compounds are potential nutraceutical products that could be used for cancer treatment.  相似文献   

7.
A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.  相似文献   

8.
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.  相似文献   

9.
The anticancer activity of terretonin N (1) and butyrolactone I (2), obtained from the thermophilic fungus Aspergillus terreus TM8, was intensively studied against prostate adenocarcinoma (PC-3) and ovary adenocarcinoma (SKOV3) human cell lines. According to this study, both compounds showed potent cytotoxicity towards ovarian adenocarcinoma cells (SKOV3) with IC50 1.2 and 0.6 μg/mL, respectively. With respect to metastatic prostate cells (PC-3), the two compounds 1 and 2 showed a significantly promising cytotoxicity effect with IC50 of 7.4 and 4.5 μg/mL, respectively. The tested fungal metabolites showed higher rates of early and late apoptosis with little or no necrotic apoptotic pathway in all treated prostate adenocarcinoma (PC-3) and ovary adenocarcinoma (SKOV3) human cell lines, respectively. The results reported in this study confirmed the promising biological properties of terretonin N (1) and butyrolactone I (2) as anticancer agents via the induction of cellular apoptosis. However, further studies are needed to elucidate the molecular mechanism by which cellular apoptosis is induced in cancer cells.  相似文献   

10.
Multiple human health-beneficial effects have been related to highly phosphorylated inositol hexaphosphate (IP6). This naturally occurring carbohydrate and its parent compound, myo-inositol (Ins), are abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate important cellular functions. However, the striking and broad-spectrum anticancer activity of IP6, consistently demonstrated in different experimental models, has been in a spotlight of the scientific community dealing with the nutrition and cancer during the last several decades. First experiments were performed in colon cancer 30 years ago. Since then, it has been shown that IP6 reduces cell proliferation, induces apoptosis and differentiation of malignant cells with reversion to normal phenotype, affecting several critical molecular targets. Enhanced immunity and antioxidant properties also contribute to the tumor cell destruction. Although Ins possesses a modest anticancer potential, the best anticancer results were obtained from the combination of IP6 + Ins. Here we review the first experimental steps in colon cancer, when concepts and hypotheses were put together almost without real knowledge and present clinical studies, that were initiated in colon cancer patients. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anticancer effect of conventional chemotherapy, controls cancer metastases, and improves quality of life in cancer patients. Emerging clinical and still vast amount of experimental data suggest its role either as an adjuvant or as an “alternative” to current chemotherapy for cancer.  相似文献   

11.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   

12.
Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with “CM-biomimetic peptides” on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0–400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.  相似文献   

13.
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.

We developed new class of designated antibodies targeting of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation at the immunodominant mucin domains.  相似文献   

14.
As one of the key phosphatidylinositol 3-kinase-related kinases (PIKKs) family members, ataxia telangiectasia and RAD3-related protein kinase (ATR) is crucial in maintaining mammalian cell genomic integrity in DNA damage response (DDR) and repair pathways. Dysregulation of ATR has been found across different cancer types. In recent years, the inhibition of ATR has been proven to be effective in cancer therapy in preclinical and clinical studies. Importantly, tumor-specific alterations such as ATM loss and Cyclin E1 (CCNE1) amplification are more sensitive to ATR inhibition and are being exploited in synthetic lethality (SL) strategy. Besides SL, synergistic anticancer effects involving ATRi have been reported in an increasing number in recent years. This review focuses on the recent advances in different forms of synergistic antitumor effects, summarizes the pharmacological benefits and ongoing clinical trials behind the biological mechanism, and provides perspectives for future challenges and opportunities. The hope is to draw awareness to the community that targeting ATR should have great potential in developing effective anticancer medicines.  相似文献   

15.
Breast cancer is one of the leading causes of death worldwide, and synthetic chemicals targeting specific proteins or various molecular pathways for tumor suppression, such as ERK inhibitors and degraders, have been intensively investigated. The targets of ERK participate in the regulation of critical cellular mechanisms and underpin the progression of anticancer therapy. In this study, we identified a novel small molecule, which we named Z734, as a new mitogen–activated protein kinase 1 (ERK2) degrader and demonstrated that Z734 inhibits cell growth by inducing p53–mediated apoptotic pathways in human breast cancer cells. Treatment with Z734 resulted in the inhibition of cancer cell proliferation, colony formation and migration invasion, as well as cancer cell death via apoptosis. In addition, the Co–IP and GST pulldown assays indicated that the HECT and RLD domains containing E3 ubiquitin protein ligase 3 (HERC3) could directly interact with ERK2 through the HECT domain, promoting ERK2 ubiquitination. We also observed a strong link between HERC3 and p53 for the modulation of apoptosis. HERC3 can increase the protein and phosphorylation levels of p53, which further promotes apoptotic activity. In a xenograft mouse model, the effect was obtained in a treatment group that combined Z734 with lapatinib compared with that of the single–treatment groups. In summary, our results indicated that Z734 actively controls the development of breast cancer through apoptosis, and HERC3 may mediate ERK2 and p53 signaling, which offers new potential targets for clinical therapy.  相似文献   

16.
Proliferating cancer cells have high energy demands, which is mainly obtained through glycolysis. The transmembrane trafficking of lactate, a major metabolite produced by glycolytic cancer cells, relies on monocarboxylate transporters (MCTs). MCT1 optimally imports lactate, although it can work bidirectionally, and its activity has been linked to cancer aggressiveness and poor outcomes. AZD3965, a specific MCT1 inhibitor, was tested both in vitro and in vivo, with encouraging results; a phase I clinical trial has already been undertaken. Thus, analysis of the experimental evidence using AZD3965 in different cancer types could give valuable information for its clinical use. This systematic review aimed to assess the in vivo anticancer activity of AZD3965 either alone (monotherapy) or with other interventions (combination therapy). Study search was performed in nine different databases using the keywords “AZD3965 in vivo” as search terms. The results show that AZD3965 successfully decreased tumor growth and promoted intracellular lactate accumulation, which confirmed its effectiveness, especially in combined therapy. These results support the setup of clinical trials, but other important findings, namely AZD3965 enhanced activity when given in combination with other therapies, or MCT4-induced treatment resistance, should be further considered in the clinical trial design to improve therapy response.  相似文献   

17.
Tyrosine-protein kinase Yes (YES1) belongs to the Tyrosine-protein kinase family and is involved in several biological activities, including cell survival, cell–cell adhesion, cell differentiation, and cytoskeleton remodeling. It is highly expressed in esophageal, lung, and bladder cancers, and thus considered as an attractive drug target for cancer therapy. In this study, we performed a virtual screening of phytoconstituents from the IMPPAT database to identify potential inhibitors of YES1. Initially, the molecules were retrieved on their physicochemical properties following the Lipinski rule of five. Then binding affinities calculation, PAINS filter, ADMET, and PASS analyses followed by an interaction analysis to select safe and clinically better hits. Finally, two compounds, Glabrene and Lupinisoflavone C (LIC), with appreciable affinities and a specific interaction towards the AlphaFold predicted structure of YES1, were identified. Their time-evolution analyses were carried out using an all-atom molecular dynamics (MD) simulation, principal component analysis, and free energy landscapes. Altogether, we propose that Glabrene and LIC can be further explored in clinical settings to develop anticancer therapeutics targeting YES1 kinase.  相似文献   

18.
Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds known to be present in green tea. We previously reported that EGCG shows selective toxicity through activation of the protein kinase B (Akt)/cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase (ASM) axis via targeting its receptor 67-kDa laminin receptor (67LR), which is overexpressed in cancer. However, little is known about upstream mechanisms of EGCG-elicited ASM activation. In this study we show that the proto-oncogene tyrosine-protein kinase Src, also known as c-src, plays a crucial role in the anticancer effect of EGCG. We showed that EGCG elicits phosphorylation of Src at Tyr 416, a crucial phosphorylation site for its activity, and that the pharmacological inhibition of Src impedes the upstream events in EGCG-induced cell death signaling including upregulation of Akt activity, increase in cGMP levels, and activation of ASM. Moreover, focal adhesion kinase (FAK), which is involved in the phosphorylation of Src, is colocalized with 67LR. EGCG treatment enhanced interaction of FAK and 67LR. Consistent with these findings, pharmacological inhibition of FAK significantly neutralized EGCG-induced upregulation of Akt activity and activation of ASM. Taken together, FAK/Src play crucial roles in the upstream signaling of EGCG.  相似文献   

19.
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.  相似文献   

20.
Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011–2020).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号