首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The surface of amorphous solids cannot be usually represented by a regular lattice of adsorbing sites. One of the main characteristics of such surfaces is a variable connectivity for each site. A simple model consisting of a triangular lattice where a fraction of bonds (interactions) is suppressed at random is used here to find out, by using Monte Carlo simulations, how the adsorption thermodynamics of repulsively interacting monomers is modified with respect to the same process in the regular lattice. Adsorption isotherm, differential heat of adsorption and adsorbed phase entropy calculations are carried out showing and interpreting the effects of the variable connectivity. In particular, it is found that the order-disorder phase transition observed for the regular lattice survives, though with modifications, above a critical mean connectivity.  相似文献   

2.
We formulate limits to perception under continuous quantum measurements by comparing the quantum states assigned by agents that have partial access to measurement outcomes. To this end, we provide bounds on the trace distance and the relative entropy between the assigned state and the actual state of the system. These bounds are expressed solely in terms of the purity and von Neumann entropy of the state assigned by the agent, and are shown to characterize how an agent’s perception of the system is altered by access to additional information. We apply our results to Gaussian states and to the dynamics of a system embedded in an environment illustrated on a quantum Ising chain.  相似文献   

3.
方小玲  姜宗来 《物理学报》2007,56(12):7330-7338
利用脑电图数据建立了大脑功能性网络.分析了该网络的复杂网络统计特征,发现它的聚类系数远大于相应随机网络,明显具有小世界网络的特征,其度分布也接近于无标度网络.进一步验证了大脑功能性网络的复杂网络特性,发现患者的各项复杂网络特征指数与正常人相比有明显不同.定义了大脑神经网络信息熵及神经网络标准信息熵的概念,发现脑病患者的大脑神经网络信息熵明显小于正常人.从一个全新的角度量度了大脑的复杂网络特征,并提示了临床脑病诊疗的判断依据. 关键词: 脑电图 大脑功能性网络 复杂网络统计特征 信息熵  相似文献   

4.
Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal–parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such as Theory-of-Mind, cognitive flexibility, and information processing; and 2) how connection abnormalities relate to, and may determine, behavioral symptoms hallmarked by the triad of Impairments in ASD. Furthermore, we will relate the disrupted cortical connectivity model to existing cognitive and neural models of ASD.  相似文献   

5.
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100 μm–10 mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.  相似文献   

6.
李凌  金贞兰  李斌 《中国物理 B》2011,20(3):38701-038701
Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4--7 Hz), alpha (8--13 Hz) and beta (14--30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coefficient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm.  相似文献   

7.
In this paper, we review blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies addressing the neural correlates of touch, thermosensation, pain and the mechanisms of their cognitive modulation in healthy human subjects. There is evidence that fMRI signal changes can be elicited in the parietal cortex by stimulation of single mechanoceptive afferent fibers at suprathreshold intensities for conscious perception. Positive linear relationships between the amplitude or the spatial extents of BOLD fMRI signal changes, stimulus intensity and the perceived touch or pain intensity have been described in different brain areas. Some recent fMRI studies addressed the role of cortical areas in somatosensory perception by comparing the time course of cortical activity evoked by different kinds of stimuli with the temporal features of touch, heat or pain perception. Moreover, parametric single-trial functional MRI designs have been adopted in order to disentangle subprocesses within the nociceptive system.

Available evidence suggest that studies that combine fMRI with psychophysical methods may provide a valuable approach for understanding complex perceptual mechanisms and top-down modulation of the somatosensory system by cognitive factors specifically related to selective attention and to anticipation. The brain networks underlying somatosensory perception are complex and highly distributed. A deeper understanding of perceptual-related brain mechanisms therefore requires new approaches suited to investigate the spatial and temporal dynamics of activation in different brain regions and their functional interaction.  相似文献   


8.
Random fluctuations in neuronal processes may contribute to variability in perception and increase the information capacity of neuronal networks. Various sources of random processes have been characterized in the nervous system on different levels. However, in the context of neural correlates of consciousness, the robustness of mechanisms of conscious perception against inherent noise in neural dynamical systems is poorly understood. In this paper, a stochastic model is developed to study the implications of noise on dynamical systems that mimic neural correlates of consciousness. We computed power spectral densities and spectral entropy values for dynamical systems that contain a number of mutually connected processes. Interestingly, we found that spectral entropy decreases linearly as the number of processes within the system doubles. Further, power spectral density frequencies shift to higher values as system size increases, revealing an increasing impact of negative feedback loops and regulations on the dynamics of larger systems. Overall, our stochastic modeling and analysis results reveal that large dynamical systems of mutually connected and negatively regulated processes are more robust against inherent noise than small systems.  相似文献   

9.
This paper investigates how well different kinds of fMRI functional connectivity analysis reflect the underlying interregional neural interactions. This is hard to evaluate using real experimental data where such relationships are unknown. Rather, we use a biologically realistic neural model to simulate both neuronal activities and multiregional fMRI data from a blocked design. Because we know how every element in the model is related to every other element, we can compare functional connectivity measurements across different spatial and temporal scales. We focus on (1) psycho-physiological interaction (PPI) analysis, which is a simple brain connectivity method that characterizes the activity in one brain region by the interaction between another region's activity and a psychological factor, and (2) interregional correlation analysis. We investigated the neurobiological underpinnings of PPI using simulated neural activities and fMRI signals generated by a large-scale neural model that performs a visual delayed match-to-sample task. Simulated fMRI data are generated by convolving integrated synaptic activities (ISAs) with a hemodynamic response function. The simulation was done under three task conditions: high-attention, low-attention and a control task ('passive viewing'). We investigated how biological and scanning parameters affect PPI and compared these with functional connectivity measures obtained using correlation analysis. We performed correlational and PPI analyses with three types of time-series data: ISA, fMRI and deconvolved fMRI (which yields estimated neural signals) obtained using a deconvolution algorithm. The simulated ISA can be considered as the 'gold standard' because it represents the underlying neural activity. Our main findings show (1) that evaluating the change in an interregional functional connection using the difference in regression coefficients (as is essentially done in the PPI method) produces results that better reflect the underlying changes in neural interrelationships than does evaluating the functional connectivity difference as a change in correlation coefficient; (2) that using fMRI and deconvolved fMRI data led to similar conclusions in the PPI-based functional connectivity results, and these generally agreed with the nature of the underlying neural interactions; and (3) the functional connectivity correlation measures often led to different conclusions regarding significance for different scanning and hemodynamic parameters, but the significances of the PPI regression parameters were relatively robust. These results highlight the way in which neural modeling can be used to help validate the inferences one can make about functional connectivity based on fMRI data.  相似文献   

10.
The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.  相似文献   

11.
《Physics letters. A》2005,336(1):8-15
We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition.  相似文献   

12.
Recently, there has been a resurgence of formal language theory in deep learning research. However, most research focused on the more practical problems of attempting to represent symbolic knowledge by machine learning. In contrast, there has been limited research on exploring the fundamental connection between them. To obtain a better understanding of the internal structures of regular grammars and their corresponding complexity, we focus on categorizing regular grammars by using both theoretical analysis and empirical evidence. Specifically, motivated by the concentric ring representation, we relaxed the original order information and introduced an entropy metric for describing the complexity of different regular grammars. Based on the entropy metric, we categorized regular grammars into three disjoint subclasses: the polynomial, exponential and proportional classes. In addition, several classification theorems are provided for different representations of regular grammars. Our analysis was validated by examining the process of learning grammars with multiple recurrent neural networks. Our results show that as expected more complex grammars are generally more difficult to learn.  相似文献   

13.
For general networks of pulse-coupled oscillators, including regular, random, and more complex networks, we develop an exact stability analysis of synchronous states. As opposed to conventional stability analysis, here stability is determined by a multitude of linear operators. We treat this multioperator problem exactly and show that for inhibitory interactions the synchronous state is stable, independent of the parameters and the network connectivity. In randomly connected networks with strong interactions this synchronous state, displaying regular dynamics, coexists with a balanced state exhibiting irregular dynamics. External signals may switch the network between qualitatively distinct states.  相似文献   

14.
The Navier-Stokes systems for compressible fluids with density-dependent viscosities are considered in the present paper. These equations, in particular, include the ones which are rigorously derived recently as the Saint-Venant system for the motion of shallow water, from the Navier-Stokes system for incompressible flows with a moving free surface [14]. These compressible systems are degenerate when vacuum state appears. We study initial-boundary-value problems for such systems for both bounded spatial domains or periodic domains. The dynamics of weak solutions and vacuum states are investigated rigorously. First, it is proved that the entropy weak solutions for general large initial data satisfying finite initial entropy exist globally in time. Next, for more regular initial data, there is a global entropy weak solution which is unique and regular with well-defined velocity field for short time, and the interface of initial vacuum propagates along the particle path during this time period. Then, it is shown that for any global entropy weak solution, any (possibly existing) vacuum state must vanish within finite time. The velocity (even if regular enough and well-defined) blows up in finite time as the vacuum states vanish. Furthermore, after the vanishing of vacuum states, the global entropy weak solution becomes a strong solution and tends to the non-vacuum equilibrium state exponentially in time.  相似文献   

15.
Based on Snyder's idea of quantized space-time, we derive a new generalized uncertainty principle and new modified density of states. Accordingly, we discuss the influence of the modified generalized uncertainty principle on the black hole entropy and the influence of the modified density of states on the Stefan-Boltzman law.  相似文献   

16.
In this paper we show that during the retrieval process in a binary symmetric Hebb neural network, spatially localized states can be observed when the connectivity of the network is distance-dependent and a constraint on the activity of the network is imposed, which forces different levels of activity in the retrieval and learning states. This asymmetry in the activity during retrieval and learning is found to be a sufficient condition to observe spatially localized retrieval states. The result is confirmed analytically and by simulation.  相似文献   

17.
伊国胜  王江  韩春晓  邓斌  魏熙乐  李诺 《中国物理 B》2013,22(2):28702-028702
Manual acupuncture is widely used for pain treatment and stress control. Previous studies on acupuncture have shown its modulatory effects on functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of threshold, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas characteristic path length is shorter. We provide further support for the presence of "small-world" network characteristics in functional networks by acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of acupuncture effects on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.  相似文献   

18.
Processing of meaning is critical for language perception, and therefore the majority of research on meaning processing has focused on the semantic, lexical, conceptual, and propositional processing of language. However, music is another a means of communication, and meaning also emerges from the interpretation of musical information. This article provides a framework for the investigation of the processing of musical meaning, and reviews neuroscience studies investigating this issue. These studies reveal two neural correlates of meaning processing, the N400 and the N5 (which are both components of the event-related electric brain potential). Here I argue that the N400 can be elicited by musical stimuli due to the processing of extra-musical meaning, whereas the N5 can be elicited due to the processing of intra-musical meaning. Notably, whereas the N400 can be elicited by both linguistic and musical stimuli, the N5 has so far only been observed for the processing of meaning in music. Thus, knowledge about both the N400 and the N5 can advance our understanding of how the human brain processes meaning information.  相似文献   

19.
Processing of meaning is critical for language perception, and therefore the majority of research on meaning processing has focused on the semantic, lexical, conceptual, and propositional processing of language. However, music is another a means of communication, and meaning also emerges from the interpretation of musical information. This article provides a framework for the investigation of the processing of musical meaning, and reviews neuroscience studies investigating this issue. These studies reveal two neural correlates of meaning processing, the N400 and the N5 (which are both components of the event-related electric brain potential). Here I argue that the N400 can be elicited by musical stimuli due to the processing of extra-musical meaning, whereas the N5 can be elicited due to the processing of intra-musical meaning. Notably, whereas the N400 can be elicited by both linguistic and musical stimuli, the N5 has so far only been observed for the processing of meaning in music. Thus, knowledge about both the N400 and the N5 can advance our understanding of how the human brain processes meaning information.  相似文献   

20.
On the nature of the BOLD fMRI contrast mechanism   总被引:17,自引:0,他引:17  
Since its development about 15 years ago, functional magnetic resonance imaging (fMRI) has become the leading research tool for mapping brain activity. The technique works by detecting the levels of oxygen in the blood, point by point, throughout the brain. In other words, it relies on a surrogate signal, resulting from changes in oxygenation, blood volume and flow, and does not directly measure neural activity. Although a relationship between changes in brain activity and blood flow has long been speculated, indirectly examined and suggested and surely anticipated and expected, the neural basis of the fMRI signal was only recently demonstrated directly in experiments using combined imaging and intracortical recordings. In the present paper, we discuss the results obtained from such combined experiments. We also discuss our current knowledge of the extracellularly measured signals of the neural processes that they represent and of the structural and functional neurovascular coupling, which links such processes with the hemodynamic changes that offer the surrogate signal that we use to map brain activity. We conclude by considering applications of invasive MRI, including injections of paramagnetic tracers for the study of connectivity in the living animal and simultaneous imaging and electrical microstimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号