首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of the therapeutic cannabinoid compounds from Cannabis Sativa L. (C. Sativa) is important for the development of cannabis-based pharmaceuticals for cancer treatment, among other ailments. The main pharmacological cannabinoids are THC and CBD. However, THC also induces undesirable psychoactive effects. The decarboxylation process converts the naturally occurring acidic forms of cannabinoids, such as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA), to their more active neutral forms, known as cannabidiol (CBD) and tetrahydrocannabinol (THC). The purpose of this study was to selectively extract cannabinoids using a novel in situ decarboxylation pressurized hot water extraction (PHWE) system. The decarboxylation step was evaluated at different temperature (80–150 °C) and time (5–60 min) settings to obtain the optimal conditions for the decarboxylation-PHWE system using response surface methodology (RSM). The system was optimized to produce cannabis extracts with high CBD content, while suppressing the THC and CBN content. The identification and quantification of cannabinoid compounds were determined using UHPLC-MS/MS with external calibration. As a result, the RSM has shown good predictive capability with a p-value < 0.05, and the chosen parameters revealed to have a significant effect on the CBD, CBN and THC content. The optimal decarboxylation conditions for an extract richer in CBD than THC were set at 149.9 °C and 42 min as decarboxylation temperature and decarboxylation time, respectively. The extraction recoveries ranged between 96.56 and 103.42%, 95.22 and 99.95%, 99.62 and 99.81% for CBD, CBN and THC, respectively.  相似文献   

2.
Cannabis sativa L. is an herbaceous plant belonging to the family of Cannabaceae. It is classified into three different chemotypes based on the different cannabinoids profile. In particular, fiber-type cannabis (hemp) is rich in cannabidiol (CBD) content. In the present work, a rapid nano liquid chromatographic method (nano-LC) was proposed for the determination of the main cannabinoids in Cannabis sativa L. (hemp) inflorescences belonging to different varieties. The nano-LC experiments were carried out in a 100 µm internal diameter capillary column packed with a C18 stationary phase for 15 cm with a mobile phase composed of ACN/H2O/formic acid, 80/19/1% (v/v/v). The reverse-phase nano-LC method allowed the complete separation of four standard cannabinoids in less than 12 min under isocratic elution mode. The nano-LC method coupled to ultraviolet (UV) detection was validated and applied to the quantification of the target analytes in cannabis extracts. The nano-LC system was also coupled to an electrospray ionization–mass spectrometry (ESI-MS) detector to confirm the identity of the cannabinoids present in hemp samples. For the extraction of the cannabinoids, three different approaches, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), and an extraction procedure adapted from the French Pharmacopeia’s protocol on medicinal plants, were carried out, and the results achieved were compared.  相似文献   

3.
In this work, we report the first CASPT2//CASSCF study of the mechanism of the photodecarboxylation of N-phthaloylglycine. The charge transfer excited state S CT ( 1∏∏*) is initially populated upon irradiation at 266 nm. As a result of a fast internal conversion to the lowest excited singlet state S CT-N ( 1∏∏*), this state becomes a favorable precursor state for proton transfer, which triggers decarboxylation. Actually, the excited state intramolecular proton transfer (ESIPT) and decarboxylation processes proceed in an asynchronous concerted way. The ESIPT process is accomplished in the S CT-N ( 1∏∏*) state, but the CO 2 molecule is finally formed in the ground state via the S CT /S 0 conical intersection. Azomethine ylide is formed in the ground state as a complex with CO 2 . A barrier of ~15 kcal/mol indicates that azomethine ylide is stable in the ground state, which is consistent with the experimental findings. This work provides mechanistic details about the formation of azomethine ylide by photoreaction of N-phthaloylglycine.  相似文献   

4.
The high-throughput quantitation of cannabinoids is important for the cannabis industry. As medicinal products increase, and research into compounds that have pharmacological benefits increase, and the need to quantitate more than just the main cannabinoids becomes more important. This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, Δ8-THC, CBL, CBC, THCA-A and CBCA. Linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery and matrix effect were all evaluated. The validated method was used to determine the cannabinoid concentration of four different Cannabis sativa strains and a low THC strain, all of which have different cannabinoid profiles. All cannabinoids eluted within five minutes with a total analysis time of eight minutes, including column re-equilibration. This was twice as fast as published LC-QQQ-MS methods mentioned in the literature, whilst also covering a wide range of cannabinoid compounds.  相似文献   

5.
The energy levels of a two-electron four-center mixed-valence system are calculated as functions of a resonance integral (β′) and an electron repulsion parameter (ko). Using configuration interaction, exact solutions are given for all intermediate cases between the valence-bond limit (small β′/ko) and the molecular-orbital limit (large β′/ko). The results are applied to the [W4O8Cl8(H2O)4]2? case. The main predictions are the occurrence of a diamagnetic ground state with a large singlet-triplet gap, and the existence of an intense intervalence band polarized in the molecular plane. These predictions are supported by experiment. From the analysis of the optical spectrum it is concluded that this system is nearer to the molecular-orbital limit than to the valence-bond limit.  相似文献   

6.
Cannabis sativa is one of the oldest medicinal plants in the world. It was introduced into western medicine during the early 19th century. It contains a complex mixture of secondary metabolites, including cannabinoids and non-cannabinoid-type constituents. More than 500 compounds have been reported from C. sativa, of which 125 cannabinoids have been isolated and/or identified as cannabinoids. Cannabinoids are C21 terpeno-phenolic compounds specific to Cannabis. The non-cannabinoid constituents include: non-cannabinoid phenols, flavonoids, terpenes, alkaloids and others. This review discusses the chemistry of the cannabinoids and major non-cannabinoid constituents (terpenes, non-cannabinoid phenolics, and alkaloids) with special emphasis on their chemical structures, methods of isolation, and identification.  相似文献   

7.
An assembly of Keggin polyoxomolybdate and organic substrate(Hbipy)3[PMo12O40](1,bipy=2,2’-bipyridine) was synthesized and characterized by elemental analysis,infrared spectrum,and single-crystal X-ray analysis.The ligand bipy of compound 1 was generated by a decarboxylation coupling reaction of H2pdc(H2pdc=pyridine-2,6-dicarboxylic acid) in situ under hydrothermal reaction conditions and the control experiments illustrate that La(NO33 or Ce(NO33,which does not appear in the final structure,is necessary for the decarboxylation coupling reaction.Moreover,compound 1 displays strong photoluminescence property in the solid state at room temperature.  相似文献   

8.
Cannabinoids are the primary bioactive constituents of Cannabis sativa and Cannabis indica plants. In this work, gas chromatography in conjunction with triple quadrupole mass spectrometry in multiple reaction monitoring mode was explored for determination of cannabinoids from a surrogate hops matrix. Gas chromatography with mass spectrometry is a reasonable choice for the analysis of these compounds; however, such methods are susceptible to false positives for Δ9‐tetrahydrocannabinol, due to decarboxylation of Δ9‐tetrahydrocannabinolic acid, its acid precursor, in the hot injection port. To avoid this transformation, the carboxyl group of Δ9‐tetrahydrocannabinolic acid was protected through a silylation reaction. Multiple reaction monitoring transitions for both unmodified and silylated cannabinoids were developed and the fragmentation pathways for the different species were assigned. Precision and accuracy were evaluated for cannabinoids spiked into hops at different levels. The developed methods provided good linearity (R2 > 0.99) for all the cannabinoids with a linear range from 0.15 to 20 mg/L, and with limits of detection in the orders of low‐ to mid‐picogram on column. The recoveries for the cannabinoids were generally between 75 and 120%. Precisions (<6% coefficient of variation) were within acceptable ranges.  相似文献   

9.
A rapid and simple gas chromatography–mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method. As a result of the analysis, ten species of synthetic cannabinoids were identified in dried leaves (n?=?40), bulk powders (n?=?6), and tablets (n?=?14) seized in Korea during 2009–2012, as a single ingredient or as a mixture with other active co-ingredients. JWH-018 and JWH-073 were the most frequently identified compounds in the seized materials. Synthetic cannabinoids in the dried leaves showed broad concentration ranges, which may cause unexpected toxicity to abusers. The bulk powders were considered as raw materials used to prepare legal highs, and they contained single ingredient of JWH-073, JWH-019, or JWH-250 with the purity over 70 %. In contrast, JWH-018 and JWH-073 contents in the tablets were 7.1–13.8 and 3.0–10.2 mg/g, respectively. Relatively low contents in the tablets suggest that the synthetic cannabinoids may have been added to the tablets as supplements to other active co-ingredients.  相似文献   

10.
A new synthetic approach to 6-alkenyl-substituted pyridoxine derivatives was developed based on the Heck reaction. The reaction, which was catalyzed using a mixture of Pd(OAc)2, (o-Tol)3P and Bu3N as a base, led to seven new 6-alkenyl pyridoxine derivatives. When acrylic acid was used the products of decarboxylation and dimerization were formed.  相似文献   

11.
The spontaneous decarboxylation of 0.5 m aqueous α‐alanine solutions as a function of pH (1–9 at 320°C, where neutrality is approximately 6) was determined with a flow reactor at 280–330°C and 275 bar by FT‐IR spectroscopy. The kinetics for the cationic and anionic forms have not been previously reported. The rate constants for the cationic form [CH3(NH3+)CHCO2H], the anionic form [CH3(NH2)CHCO2?], and the zwitterion form [CH3(NH3+)CHCO2?] were obtained and followed the first‐order rate law. The rate of decarboxylation of the zwitterion is three times greater than that of the cationic and anionic forms in the temperature and pH ranges of study. The corresponding Arrhenius parameters were determined and compared with previously reported data. The addition of KCl (1 and 2 m) at the natural pH of α‐alanine resulted in a reduction of the decarboxylation rate, suggesting that the transition state is less polar than the zwitterion and/or that the activity of the zwitterion has been reduced. The α‐alanine solution is therefore somewhat more robust in solutions of high ionic strength, such as seawater, than it is in pure water. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 271–277, 2002  相似文献   

12.
Both processes of decarboxylation and decarbonylation of a number of acids including RCOCO2H,R=H,CH3,CH2F,CF3,CH=CH2,Ph,OH have been studied by semi-empirical MO theory AMI method to verify the reaction mechanism of each process and the effect of different substituents on them.The calculated results are consistent with the experimental reports and can be summed up as follows:(1) The decarboxylation of these acids to form aldehydes and carbon dioxide is concerted and takes place through a 4-membered ring transition state in which a partial negative charge develops on the carbon of the α-carbonyl group,so that the inductive effect of some substituents is favourable for this process.(2) Their decarbonylation into carboxylic acids and carbon monoxide however is the attack of the OH on the carbon of the alkyl portion of the acid,forming a 3-membered ring transition state.(3) The activation energy of decarbonylation is lower than that of decarboxylation,since oxygen is more nucleophilic than hydrogen and als  相似文献   

13.
An expedient synthetic procedure of indolo[1,2-a]quinolines was developed using a sequential Cu-mediated N-arylation of indole, Mn(OAc)3-mediated oxidative free radical cyclization, and NaI/O2-assisted concomitant dealkoxycarbonylation/aerobic oxidation. The last step was replaced by a palladium-catalyzed decarboxylation/elimination protocol for the allyl ester derivatives.  相似文献   

14.
The oxidative decarboxylation of various ??-aryl- and ??,??-arylcarboxylic acids having electron-donating and electron-withdrawing groups by using a stoichiometric amount of potassium 12-tungstocobaltate(III), K5CoIIIW12O40, in 50% aqueous acetonitrile solution resulted in the corresponding aldehydes and ketones in high yields within short reaction times under microwave irradiation. This transformation was also carried out under the conventional heating conditions which produced the corresponding aldehydes and ketones in relatively longer reaction times. The arylacetic acids with electron-withdrawing substituents required longer reaction times and produced lower yields. In contrast to arylacetic esters which were inert toward decarboxylation, the sodium arylacetates were decarboxylated in shorter times with yields better than those of the parent acids.  相似文献   

15.
《Chemical physics》1986,108(3):461-472
The fully expanded expression for the Boltzmann-averaged pairwise intermolecular interaction energy of two molecules of arbitrary symmetry in the long-range (interaction < kT) limit has recently been determined explicitly as a series in rn (r is the intermolecular separation) for n < 11. The resultant expression contains only multipolar products (point moment functions: PMFs) and energy terms which are characteristic of the ground state and excitation properties of the isolated molecules. These quantities are determined for H2O and H2O2 using the single particle-hole RPA method, and the interaction energy contributions determined by direct state summation. Static electric dipole polarizabilities are determined as a by-product of the procedure, and are shown to agree closely with finite field results using a comparable basis. For the chiral H2O2/H2O2 system, the r−6 and r−9 discrimination energies are also calculated, suggesting that the r−9 contributions could well exceed the r−6 discriminatory terms for separations less than 20 au.  相似文献   

16.
Polymerizations of vinyl acetate are photocatalyzed by TiO2 nanoparticles in presence of carboxylic acids including propionic acid, n-butyric acid and pivalic acid. Nuclear magnetic resonance (NMR) analysis using 13C-labeled n-butyric acid as the probing molecule demonstrates that the polymerization of vinyl acetate is initiated by alkyl radicals generated from photocatalytic decarboxylation of the carboxylic acid. A universal mechanism is established with extending the photo-Kolbe reaction from acetic acid to the carboxylic acids with longer chains. Kinetics studies find that n-butyric acid has higher initiation rate than acetic acid, indicating more efficient decarboxylation for butyric acid than acetic acid in their aqueous solutions. It is proved that carboxylates participate in the decarboxylation. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra are obtained with aqueous solutions of the carboxylic acids in contact with a layer of the TiO2 nanoparticles, and the observations are discussed with respect to the interaction between the TiO2 and carboxylic acids.  相似文献   

17.
Diethyl 9-octadecene-1,18-dioate was obtained in 87% yield based on 50% theoretical conversion by the olefin metathesis reaction catalyzed by WOCl4-Cp2TiMe2. The Dieckmann condensation of this diester using potassium hydride afforded 2-ethoxycarbonylcyclo-9-heptadecenone, which was converted by hydrolysis and decarboxylation to cyclo-9-heptadecenone (civetone) as a mixture of cis and trans isomers (1.3 : 1) in 54% yield. Also 9-octadecen-18-olide was obtained in 17.9% by the metathesis of oleyl oleate.  相似文献   

18.
In the presence of excess H2O2, oxidation of dopamine was diverted from the usual pigment-forming pathway to afford 6-hydroxydopamine and then a colorless reaction mixture comprising a polar non-extractable product. The latter was obtained in 20% yield by oxidation of 6-hydroxydopamine and was tentatively formulated as the novel 5-(2-aminoethyl)-2-hydroxy-5-(3-hydroxy-2-oxotetrahydro-1aH-oxireno[2,3]cyclopenta[1,2-b]pyrrol-3a(4H)-yl)cyclohex-2-ene-1,4-dione by extensive spectral analysis and conversion to a tetraacetyl derivative. Mechanistic experiments suggested that formation of the product proceeds via 6-hydroxydopamine by H2O2-dependent epoxidation and cyclization steps followed by dimerization and ring contraction with decarboxylation.  相似文献   

19.
BackgroundCannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified.MethodsThus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors.ResultsThe results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.  相似文献   

20.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that make them of interest for applications in separation science. In this study, a green, simple, and sensitive sample pretreatment procedure coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of sulfadimidine (SM2) that exploits an aqueous two-phase system based on 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and ammonium sulfate ((NH4)2SO4) using a liquid?Cliquid extraction technique in real environmental water samples. The influences of the concentration of (NH4)2SO4, pH value, temperature, and concentration of SM2 on the extraction efficiency of SM2 were determined. Under optimal conditions, the extraction efficiencies of SM2 were over 93.7%. Calibration curves yielded good linearity (R 2 = 0.9998) over the range 3?C240 ng mL?1, and the limit of detection and limit of quantification for analytes were 0.9 ng mL?1 and 3 ng mL?1, respectively. The proposed method was successfully applied to the quantification of SM2 in water samples and recoveries were in the range of 101.2?C107%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号