首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
National Renewable Energy Laboratory (NREL) designed a shrinking-bed reactor to maintain a constant bulk packing density of cellulosic biomass. The high solid-to-liquid ratio in the pretreatment process allows a high sugar yield and avoids the need to flush large volumes of solution through the reactor. To scale up the shrinking-bed reactor, NREL investigated a pilot-scale screw conveyor reactor in which an interrupted flight between screws was employed to mimic the “shrinking-bed” effect. In the experiments with the screw conveyor reactor, overmixing and uneven flow occurred. These phenomena produce negative effects on biomass hydrolysis. The flow behavior inside the reactor was analyzed to allow redesign of the screw to achieve adequate mixing and even flow. In the present study, computational fluid dynamics (CFD) was utilized to simulate the fluid flow in the porous media, and a new screw design was proposed. CFD analysis performed on the redesigned reactor indicated that an even flow pattern was achieved.  相似文献   

2.
For many lignocellulosic substrates, hemicellulose is biphasic upon dilute-acid hydrolysis, which led to a modified percolation process employing simulated two-stage reverse-flow. This process has been proven to attain substantially higher sugar yields and concentrations over the conventional single-stage percolation process. The dilute-acid pretreatment of biomass solubilizes the hemicellulose fraction in the solid biomass, leaving less solid biomass in the reactor and reducing the bed. Therefore, a bed-shrinking mathematic kinetic model was developed to describe the two-stage reverse-flow reactor operated for hydrolyzing biphasic substrates, including hemicellulose, in corn cob/stover mixture (CCSM). The simulation indicates that the shrinking-bed operation increases the sugar yield by about 5%, compared to the nonshrinking bed operation in which 1 reactor volume of liquid passes through the reactor (i.e.,t = 1.0). A simulated optimal run further reveals that the fast portion of hemicellulose is almost completely hydrolyzed in the first stage, and the slow portion of hemicellulose is hydrolyzed in the second stage. Under optimal conditions, the bed shrank 27% (a near-maximum value), and a sugar yield over 95% was attained.  相似文献   

3.
Park CP  Maurya RA  Lee JH  Kim DP 《Lab on a chip》2011,11(11):1941-1945
A transparent dual-channel microreactor with highly enhanced contact area-to-volume ratio was fabricated for efficient photosensitized oxygenations. The dual-channel microreactor shielded with polyvinylsilazane (PVSZ) consisting of an upper channel for liquid flow and a lower channel for O(2) flow, allows sufficient phase contact along the parallel channels through a gas permeable PDMS membrane for maintaining the O(2) saturated solution. Under full exposure of reactants to light, the reactions in high concentration are completed in minutes rather than hours that it takes to complete in a batch reactor. Moreover, the scale-up process using the microreactor revealed higher productivity than the batch reactor, which would be valuable for the practical applications in a broad range of gas-liquid chemical reactions.  相似文献   

4.
ASPEN-PlusŖ process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a “black box” stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than on H2SO4-based system and highly sensitive to reactor pressure and solids concentration.  相似文献   

5.
Computational fluid dynamic simulations are employed to predict flow characteristics in a continuous auger driven reactor designed for the dilure acid pretreatment of biomass. Slurry containing a high concentration of biomass solids exhibits a high viscosity, which poses unique mixing issues within the reactor. The viscosity increases significantly with a small increase in solids concentration and also varies with temperature. A well-mixed slurry is desirable to evenly distribute acid on biomass, prevent buildup on the walls of the reactor, and provides an uniform final product. Simulations provide flow patterns obtained over a wide range of viscosities and pressure distributions, which may affect reaction rates. Results provide a tool for analyzing sources of inconsistencies in product quality and insight into future design and operating parameters.  相似文献   

6.
McCreedy T  Wilson NG 《The Analyst》2001,126(1):21-23
Microfabricated devices constructed from glass and polydimethylsiloxane with integral heaters are described, which can be used for heterogeneous catalysis reactions. Sulfated zirconia is used as the catalyst in an open channel reactor, with either a syringe pump or electroosmotic flow being used to deliver the reactants. The results clearly demonstrate that very high conversion efficiencies are possible, however, the thermodynamics of the reactions are the same as in bulk systems. Ethanol and hexanol are dehydrated to ethene and hexene, respectively, with conversion efficiencies approaching 100%, and the esterification of ethanol is investigated. Yields of approximately 30% ethyl acetate are obtained by gas chromatographic analysis. This is the first time such a method for fabricating a catalyst micro reactor has been reported, yet it demonstrates sufficient robustness and resistance to leakage. The use of electroosmotic flow in a heated catalyst reactor is a significant advancement in reactor design.  相似文献   

7.
Because of the recalcitrant nature of lignocellulosic materials, it is important to pretreat the biomass in order to obtain a suitable material for the bioconversion. In this study, two different types of pretreatments were performed. The first experiment used a 2-gal Parr reactor operated at 140, 150,160, and 170‡C with sulfuric acid concentrations varying from 0.5 to 2%. A second pretreatment was performed with a two-stage low-temperature process. The first-stage pretreatment was performed at 100 or 120‡C with sulfuric acid concentrations of 0.5, 2, and 5% followed by a secondstage pretreatment at 120‡C with 2% acid concentration. The best residues for enzymatic hydrolysis and simultaneous saccharification and fermentations (SSF) came from the higher temperature pretreatment with the Parr reactor. However, a large portion of the xylose fraction was degraded to furfural and glucose was degraded to HMF. On the contrary, the two-stage low temperature pretreatment resulted in a very low percentage of xylose degradation, and no glucose degradation. The residues from this two-stage pretreatment performed satisfactorily toward the production of ethanol by SSFs. This study discusses the results obtained from these experiments.  相似文献   

8.
An ultraviolet (UV) coil reactor was designed and used for the online sterilization of cheese whey. Its microbial destruction efficiency was compared to that of the conventionally used UV reactor. Both reactors have the same geometry (840 ml volume and 17 mm gap size) and were tested at 11 flow rates of 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, and 70 ml/min. The results obtained from this study showed that despite of its high turbidity, cheese whey could be sterilized using UV radiation if the proper reactor design and flow rate are used. The performances of the UV reactors were governed by the flow rate and the hydraulics of flow inside the reactor. The flow was laminar in both the reactors, as the Reynolds number was in the range of 1.39–20.10. The phenomenon of Dean Flow was observed in the coil reactor and the Dean number was in the range of 1.09–15.41. Dean vortices resulted in higher microbial destruction efficiency in the coil reactor in a shorter retention time. The rate of microbial destruction was found to be exponential in the conventional reactor and polynomial in the coil reactor. Increasing the flow rate from 5 ml/min to 70 ml/min decreased the microbial destruction efficiency of the conventional reactor from 99.40 to 31.58%, while the microbial destruction efficiency in the coil reactor increased from 60.77% at the flow rate of 5 ml/min to 99.98% at the flow rate of 30 ml/min and then decreased with further increases in flow rate reaching 46.2% at the flow rate of 70 ml/min. The maximum effluent temperatures in the conventional and coil reactors were 45.8 and 46.1°C, respectively. Fouling in the coil reactor was significantly less compared to the conventional reactor. The extent of fouling was influenced by flow rate and reactor’s hydraulics.  相似文献   

9.
A novel, multimicrocapillary flow reactor (MμCFR) was constructed and applied to a series of sensitized photoadditions involving 2(5H)-furanones. The reactor allowed for rapid and energy-, time-, and space-efficient sensitizer screening, process optimization, validation, scale-up, and library synthesis.  相似文献   

10.
Redox flow batteries continue to be developed for utility-scale energy storage applications. Progress on standardisation, safety and recycling regulations as well as financing has helped to improve their commercialisation. The technical progress of redox flow batteries has not considered adequately the significance of electrolyte flow velocity, mass transfer and plug flow reactor modelling, despite steps in the right direction. 3D simulations of fluid flow, pressure drop, current distribution and mechanical resistance using commercial software are becoming more common, but satisfactory validation by experiments is still unusual. The majority of research tends to report short-term studies on small electrodes, often in poorly defined flow channels; long-term evaluation of electrode and membrane durability on a pilot scale is needed. Digital imaging of electrode structure using X-ray computed tomography is increasingly being used. Much activity is directed to organic and non-aqueous systems. However, scale-up and high, sustained charge capacity using electrolytes of moderate cost, which are environmentally acceptable to source, store, transport and handle, require considerable attention. Recommendations for future work are discussed.  相似文献   

11.
A scalable flow reactor is demonstrated for enantioselective and regioselective rhodium carbene reactions (cyclopropanation and C?H functionalization) by developing cascade reaction methods employing a microfluidic flow reactor system containing immobilized dirhodium catalysts in conjunction with the flow synthesis of diazo compounds. This allows the utilization of the energetic diazo compounds in a safe manner and the recycling of the dirhodium catalysts multiple times. This approach is amenable to application in a bulk‐scale synthesis employing asymmetric C?H functionalization by stacking multiple fibers in one reactor module. The products from this sequential flow–flow reactor are compared with a conventional batch reactor or flow–batch reactor in terms of yield, regioselectivity, and enantioselectivity.  相似文献   

12.
Modeling study is performed to reveal the momentum and heat/mass transfer characteristics of a turbulent or laminar plasma reactor consisting of an argon plasma jet issuing into ambient air and interacting with a co-axially counter-injected argon jet. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon–air mixture for the laminar and the turbulent regimes, respectively. Modeling results presented include the streamline, isotherm and argon mass fraction distributions for the cases with different jet-inlet parameters and different distances between the counter-injected jet exit and the plasma torch exit. It is shown that there exists a quench layer with steep temperature gradients inside the reactor; a great amount of ambient air is always entrained into the plasma reactor; and the flow direction of the entrained air, the location and shape of the quench layer are dependent on the momentum flux ratio of the plasma jet to the counter-injected cold gas. Two quite different flow patterns are obtained at higher and lower momentum flux ratios, and thus there exists a critical momentum flux ratio to separate the different flow patterns and to obtain the widest quench layer. There exists a high argon concentration or even ‘air-free’ channel along the reactor axis. No appreciable difference is found between the turbulent and laminar plasma reactors in their overall plasma parameter distributions and the quench layer locations, but the values of the critical momentum flux ratio are somewhat different.  相似文献   

13.
Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15–20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.  相似文献   

14.
A preliminary process design for dilute sulfuric acid pretreatment of aspen wood chips in order to obtain fermentable sugars has been prepared and subjected to an economic evaluation. The process design was prepared according to experimental data on the kinetics of dilute sulfuric acid prehydrolysis and particle size effects obtained in this study and our previous work. The initial economic evaluation shows woodchips are 56% of the cost of production, whereas the reactor is only 4%, and the comminution operation is just under 10%, indicating that the process economics are extremely vulnerable to feedstock costs and are thus yield-sensitive. Although chances for major cost improvements by modification of the reactor design and finding alternatives to dry milling of aspen chips to small (20–80 mesh) particles needed for acid penetration and enzymatic saccharification are not great, design improvements of the process will necessitate development of a cheaper acid resistant pretreatment reactor and a less energy intensive comminution system. Experimental results on effects of particle size on the dilute acid pretreatment design are presented.  相似文献   

15.
Liu Y  Wang H  Liu Q  Qu H  Liu B  Yang P 《Lab on a chip》2010,10(21):2887-2893
A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.  相似文献   

16.
Gas-liquid reaction carried out in an internal loop airlift reactor was modelled and subjected to the scale-up procedure. Homogeneous oxidation of glucose to gluconic acid catalyzed by Gluzyme 10000 BG, a commercial product containing the enzymes glucose oxidase and catalase as active components, was chosen as the model system. The kinetic parameters were obtained using a 12-L airlift reactor considered as a CSTR. The behaviour of a large-scale internal loop airlift reactor was modelled dividing the reactor sections into a series of tank reactors. The reliability of the model was verified by comparing experimental measurements with the simulation results obtained employing 40-L and 200-L airlift reactors. The designed model could be suitable to predict the behaviour of large-scale internal loop airlift reactors. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatransk%e Matliare, 22–26 May 2006.  相似文献   

17.
A Promising MoO_x-based Catalyst for n-Heptane Isomerization   总被引:1,自引:0,他引:1  
The increasing demand for higher-octane gasoline and the regulations limiting the amount of aromatics in the fuel motivate the interest in catalytic isomerization of n-alkanes. In the last ten years, transition metal oxides or oxycarbides based on molybdenum or tungstate have attracted much attention due to their high activity and isomerization selectivity compared to the conventional bifunctional supported platinum catalyst and high resistance to sulphur and nitrogen catalyst poisons1-5. Ma…  相似文献   

18.
稻秆的烘焙预处理及其固体产物的气化反应性能   总被引:1,自引:0,他引:1  
稻秆资源分散、水分含量高且密度低、热值低,烘焙预处理技术能够降低收集运输的物流成本,获得的固体产物能量密度高、可磨性好,适于气流床气化。在固定床热解装置上通N2保护,稻秆分别经过200℃、250℃、300℃烘焙30min,得到的固体产物在热重分析仪中与CO2进行非等温气化实验,升温速率20℃/min,终温1200℃。实验结果表明,稻秆烘焙产物以固体剩余物和不凝结气体为主,还有少量可凝结液体(水分和焦油)。气体产物中CO2所占比例超过80%,其次为CO和微量CH4。预处理温度越高,固体剩余物越少、气体产物越多,可凝结性液体变化不大。稻秆烘焙过程的能量产率为40%~60%,随温度升高经历了急剧下降和缓慢降低两个阶段。固体剩余物的可磨性相比原始稻秆有了很大的提高,易于制细粉用于气流床气化。烘焙温度升高,所得固体产物气化反应性提高。根据Coats-Redfern法确定烘焙稻秆焦-CO2气化反应机理符合二维扩散模型,求得反应活化能73kJ/mol~88kJ/mol。  相似文献   

19.
An electrochemical reactor, enabling controlled flow and capable of including a varied range of forms of electrodes, is important in the studies of electrochemical processes, such as energy production and storage, electrosynthesis of chemicals, electrowinning of metals, purification of water, wastewater treatment, remediation of soils, and so on, before the process development and scale-up. Here, we reviewed recent advances in modeling and simulation of the reaction environment in many electrochemical reactors used in multiple applications. The importance of computational fluid dynamics simulations to study existing reactors and to design novel reactor geometries and some components of existing cells is discussed. Aspects include the effect of electrolyte velocity on the flow dispersion, mass transport rates, and current distribution.  相似文献   

20.
A new machine for conducting continuous flow processes at low temperatures on a laboratory scale is reported. The use of this cryogenic flow reactor has been demonstrated by the preparation of a variety of (hetero)aromatic boronic acids and esters via lithium halogen exchange chemistry. Furthermore, scale-up of the reaction conditions not only demonstrates the application of this device for the preparation of useful building blocks but also combines the ability to process n-butyllithium directly through pump heads attached to the unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号