首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(10):906-911
An analytical procedure is proposed for the direct simultaneous determination in a single scan of Cu, Ni and V in seawater by means of adsorptive cathodic stripping voltammetry (ACSV) with mixed ligands (DMG and catechol). Optimum conditions for the determination of these three elements were studied. Detection limits of the technique depended upon the reproducibility of the procedura blank, and were found to be 0.5 nM for Cu, 0.4 nM for Ni and 0.3 nM for V. The method is suitable for the analysis of estuarine, coastal and open‐ocean waters, and especially to study the metal contamination in areas subject to oil spill events.  相似文献   

2.
Methods are described for the determination of trace and ultra trace amounts of Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb in natural waters, alkali and alkaline earth salts. Separation and preconcentration of trace metals is achieved by a column solid phase extraction procedure using silica gel modified with derivatives of dithiocarbamates — Na-DDTC (sodium diethyldithio-carbamate and HMDTC (ammonium hexamethylene-dithiocarbamate) as column packing material. The influence of the sorbent preparation procedure on the degree of sorption of the trace analytes is examined for different pH values of the sample solution. Isobutylmethyl ketone (IBMK) is proposed as an effective eluent for quantitative elution of retained metal ions. Optimal instrumental parameters for ETAAS determination of preconcentrated elements in organic eluate are presented. Practical application of sorbents in analysis of natural waters and alkali and alkaline earth salts is demonstrated. Proposed preconcentration procedure combined with ETAAS determination of trace analytes allows the determination of 0.04 g l–1 Cd, 0.1 g l–1 Cr, Cu, and Mn and 0.3 g l–1 Co, Fe, Ni and Pb in natural waters and 1.10–7% Cd, 3.10–7% Cr and Mn, 7.10–7% Co, Ni and Pb and 2.10–6% Cu and Fe in alkali and alkaline earth salts.  相似文献   

3.
A very simple and selective spectrophotometric method for simultaneous determination of iron(II), nickel(II) and cobalt(II) based on formation of their complexes with 1-(2-pyridylazo)-2-naphtol (PAN) in micellar media is described. Although the complexes of Fe(II), Ni(II) and Co(II) with reagent show a spectral overlap, they have been simultaneously determined by partial least squares (PLS) with and without preprocessing step using direct orthogonal signal correction (DOSC). The linear range was 0.30-4.50 μg ml−1 for Co(II), 0.20-3.00 μg ml−1 for Ni(II) and 0.30-5.00 μg ml−1 for Fe(II). The results obtained by the PLS and DOSC-PLS were statistically compared. Interference effects of common anions and cations were studied and the proposed method was also applied satisfactorily to the determination of Fe(II), Ni(II) and Co(II) in synthetic samples.  相似文献   

4.
This paper presents an alternative analytical method employing energy dispersive X-ray fluorescence (EDXRF) to determine copper, iron, nickel and zinc ions in ethanol fuel samples after a pre-concentration procedure. Our pre-concentration strategy utilizes analyte retention on cation exchange chromatography paper, a convenient substrate for direct EDXRF measurements. The repeatability, expressed in terms of RSD of standard solutions containing 0.25 μg mL−1 of Cu, Fe, Ni and Zn, and calculated from fifteen consecutive measurements, was 2.5, 2.8, 3.0, and 2.7%, respectively. The limits of detection (LOD), defined as the analyte concentration that gives a response equivalent to three times the standard deviation of the blank (n = 10), were found to be 13, 15, 15 and 12 μg L−1 for Cu, Fe, Ni and Zn, respectively. The proposed method was applied to Cu, Fe, Ni and Zn determination in hydrated ethanol fuel samples collected from different gas stations.  相似文献   

5.
Thiacalix[4]arenetetrasulfonate (TCAS) has been examined as a pre-column chelating reagent for the determination of trace metal ions by kinetic differentiation mode (KD) ion-pair reversed-phase high-performance liquid chromatography (HPLC) with spectrophotometric detection. Among 14 kinds of common metal ions tested here, viz. Al(III), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V), and Zn(II) ion, only Ni(II) ion was detected as the TCAS chelate in the HPLC separation stage in spite of TCAS forming the chelates with various metal ions except for Al(III), Ca(II), and Mg(II) at the pre-column chelation stage. The undetected metal-TCAS chelates seemed to be dissociated on an HPLC column where no added TCAS was present in the mobile phase because of their kinetic unstability. The calibration graph for Ni(II) ion gave a wide linear dynamic range (40-20,000 nM) with the very low detection limit (DL) (3σ base-line fluctuation) to be 5.4 nM (0.32 ng ml−1). The practical applicability of the KD-HPLC method with TCAS was demonstrated with the determination of trace Ni in coal fly ash.  相似文献   

6.
Procedures based on flameless atomic absorption spectrometry are described for the determination of Cd, Co, Cr, Cu, Ni and Pb in mineral waters. Because of matrix effects and the inadequate detection limits for direct determinations, the metals are separated from the macrocomponents by precipitation of their tetramethylenedithiocarbamates with iron(III) as collector, or by co-precipitation on Fe(OH)3. The detection limits are 0.005, 0.3, 0.08. 0.10, 2 and 0.10 μg l- for Cd, Co, Cr, Cu, Ni and Pb, respectively, and are satisfactory for the determination of these elements in mineral waters. The precision is 2–7%.  相似文献   

7.
A new technique for the determination of suspended particulate trace metals (P-metals >0.2 μm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 μm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048 ± 0.008, 10.3 ± 0.3, 0.27 ± 0.05, 3.3 ± 1.8, 0.02 ± 0.03 and 0.85 ± 0.09 ng L−1 for Co, Ni, Cu, Zn, Cd and Pb, respectively (n = 14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L−1 for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.  相似文献   

8.
The chelating resin Metalfix Chelamine and the strong cation exchanger Dowex 50W-X4 were studied for the off-line pre-concentration of Cd, Co, Cu, Ni and Zn prior to the measurements by the inductively coupled plasma atomic emission spectrometry. Different approaches to the recovery of metals were investigated and compared: the elution with the solutions of HCl and HNO3 and the decomposition of the resins with the adsorbed metals by means of the high-pressure microwave assisted system. Due to the problem arisen with the quantitative elution of the metals from the resins, which bound the analytes very strongly, the procedure of the digestion of the resin after the pre-concentration step was preferable to the plain elution, giving significantly better recoveries of the metals. The chosen procedure was applied for the determination of traces of Cd, Co, Cu, Ni and Zn in beer. For the analysis, mineralised and not mineralised beer samples were treated with Dowex 50W-X4 resin in order to assess the total content of Cd, Co, Cu, Ni and Zn and the fraction of the cationic labile species of the analytes, respectively. The increase in the sensitivity allowed determination of the selected metals at concentrations of order of 1 ng ml−1. The accuracy of the entire procedure was verified by the recovery test in the spiked samples of beer. The proposed method provides full recovery for Cd (101±1%), Co (99±2%) and Zn (106±3%) and reasonably high recovery for Cu (84±1%) and Ni (89±1%).  相似文献   

9.
The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4 h, 1 mol L−1 HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 μmol g−1) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 μmol g−1) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (ΣSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.  相似文献   

10.
A procedure for the direct determination of Cu, Fe and V in petroleum samples by electrothermal atomic absorption spectrometry using a solid sampling accessory, without any sample pre-treatment or dilution, is proposed. A Pd + Triton X-100 solution was used as chemical modifier. The pyrolysis and atomization temperatures, as well as the Pd mass were defined by multivariate optimization. The other parameters of the temperature programs were defined by univariate optimization. The limits of detection at the optimized conditions were 10, 200 and 800 pg for Cu, Fe and V, respectively, for typical sample masses ranging from 0.10 to 3.00 mg. Method accuracy was confirmed by the analysis of oil certified reference materials as well as by comparison with independent methods. Aqueous calibration solutions were used and no statistically significant difference (analysis of variance) was observed between obtained and expected values.  相似文献   

11.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   

12.
A flow analysis method with on-line sample digestion/minicolumn preconcentration/flame atomic absorption spectrometry is described for the determination of trace metals in urine. First, urine sample was on-line ultrasound-assisted digested exploiting the stopped-flow mode, and then the metals were preconcentrated passing the pre-treated sample through a minicolumn containing a chelating resin. A home-made minicolumn of commercially available imminodiacetic functional group resin, Chelite Che was used to preconcentrate trace metals (Cu, Fe, Mn and Ni) from urine. The proposed procedure allowed the determination of the metals with detection limits of 0.5, 1.1, 0.8 and 0.8 μg L−1, for Cu, Fe, Mn and Ni, respectively. The precision based on replicate analysis was less than ±10.0%, and the enrichment factor obtained was between 21.3 (Mn) and 44.1 (Ni), for sample volumes between 2.5 and 5.0 mL, and an eluent volume of 110 μL. This procedure was applied for determination of metals in urine of workers exposed to welding fumes and urine of unexposed persons (urine control).  相似文献   

13.
In this paper we present a procedure allowing total-reflection X-ray fluorescence spectrometry (TXRF) determinations of arsenic in water samples, especially in seawater samples. The procedure consists of an arsenate reduction step (performed by using a l-cysteine solution) followed by a complexation of As+3 with sodium dibenzyldithiocarbamate and solid phase extraction. The new procedure is a modification of a method developed by Prange and allows a simultaneous determination of As together with V, Fe, Ni, Cu, Zn, Pb, and U in seawater by TXRF. The procedure was tested using the Certified Reference Material CASS-4 and was later applied to regular seawater samples collected from the North Sea. The detection limit for arsenic is 10 ng L− 1.  相似文献   

14.
The strong cation exchanger Dowex 50W-x4 was used for the enrichment of traces of Cd, Co, Cu, Fe, Ni, Pb and Zn in mineral and mine waters as an alternative to the commonly applied procedures based on the application of chelating resins. The resin used was found suitable for complete retention of these metals both from the solutions of very low pH as well as those close to neutral, thus eliminating the need to buffer the samples. An analytical scheme based on filtration and solid phase extraction with Dowex 50W-x4 was proposed for partitioning Cd, Co, Cu, Fe, Ni and Pb in the examined waters. The fraction of metals associated with the suspended particles was determined after filtration through a 0.45 µm pore size filter and decomposition of the deposited matter. For the evaluation of fractions of the labile metal species and the total dissolved metals, the untreated filtrates and the solutions resulting from their digestion, respectively, were passed through Dowex 50W-x4 cation exchange columns. The retrieval of the metals was completed using a 4.0 mol L−1 solution of HCl. The described metal preconcentration and fractionation protocol offered the enrichment factor of 25 with detection limits equal to 22, 30, 92, 41, 70, 36 and 340 ng L−1, respectively for Cd, Co, Cu, Fe, Ni and Pb. Reasonably good precision and accuracy were attained.  相似文献   

15.
Li Y  Jiang Y  Yan XP 《Talanta》2004,64(3):758-765
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively.  相似文献   

16.
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 23 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L− 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min− 1, 1.3 kW, and 1.25 mL min− 1) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L− 1. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.  相似文献   

17.
A column, solid-phase extraction (SPE), preconcentration method was developed for determination of Bi, Cd, Co, Cu, Fe, Ni and Pb ions in drinking water, sea water and sediment samples by flame atomic absorption spectrometry. The procedure is based on retention of analytes in the form of pyrrolidine dithiocarbamate complexes on a short column of Chromosorb-102 resin from buffered sample solution and then their elution from the resin column with acetone. Several parameters, such as pH of the sample solution, amount of Chromosorb-102 resin, amount of ligand, volume of sample and eluent, type of eluent, flow rates of sample and eluent, governing the efficiency and throughput of the method were evaluated. The effects of divers ions on the preconcentration were also investigated. The recoveries were >95%. The developed method was applied to the determination of trace metal ions in drinking water, sea water and sediment samples, with satisfactory results. The 3σ detection limits for Cd, Cu, Fe, Ni and Pb and were found to be as 0.10, 0.44, 11, 3.6, and 10 μg l−1, respectively. The relative standard deviation of the determination was <10%. The procedure was validated by the analysis of a standard reference material sediment (GBW 07309) and by use of a method based on coprecipitation.  相似文献   

18.
Conditions for the separation by reversed-phase liquid chromatography (LC) of V(V), Cu(II), Co(III), Pd(II), Fe(III) and Ni(II) chelates with 2-(5-bromopyridylazo)-5-diethylaminophenol (5-Br-PADAP) were studied. Six species of metal chelates were separated successfully with methanol-acetonitrile-water (72:12:16, v/v/v) containing 0.13 M NaCl and 0.29 mM cetyltrimethylammonium bromide (pH 5.0) as the mobile phase on a Nucleosil C18 (5 μm) column (250 × 4 mm i.d.).The conditions of the determination of these metal chelates are discussed. A simple and rapid method for the determination of trace amounts of V(V), Cu(II), Co(III), Pd(II) and Ni(II) simultaneously by reversed-phase LC has been developed. The detection limits are 5 × 10?12, 1 × 10?10, 3 × 10?11, 5.3 × 10?9 and 2 × 10?10 g, respectively. The method is applied to the determination of these metals in natural waters and mineral samples.  相似文献   

19.
The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace elements in Al2O3 powders is reported. Special interest is given to a preconcentration of the trace elements by on-line coupling of chromatography to ICP-MS. This is based on the complexation of Co, Cu, Cr, Fe, Ga, Mn, Ni, V and Zn with hexamethylene-dithiocarbamate (HMDC), their preconcentration on a C18 RP column by reversed phase liquid chromatography and their elution with CH3OH-H2O mixtures. A direct coupling of the HPLC system to the ICP-MS has been realized by high pressure pneumatic nebulization using desolvation. With the Chromatographie method developed, removal of the AI by at least 99% was achieved. For the trace elements V, Fe, Ni, Co, Cu and Ga, high and reproducible recoveries (ranging from 96–99%) were reached. The method developed has been shown to considerably enhance the power of detection as compared with direct procedures, namely down to 0.02–0.16 ( for V and Fe, respectively. The possibilities of the method are shown by the determinations of V, Mn, Fe, Ni, Co, Cu, Zn and Ga at the μg/g level in A12O3 powders. The accuracy of the method at the 0.06 to 9.0 level for Co and Fe, respectively, is demonstrated by a comparison with results of independent methods from the literature.  相似文献   

20.
When divalent metal chloride solutions of Mn, Fe, Co, Ni and Cd were mixed with potassium titanyl oxalate solution, mixed metal oxalates were obtained in the case of Fe, Co and Ni at room temperature in the pH range 1.5–3. In the case of manganese, heating was found to be necessary to induce precipitation and complete precipitation occurred at 80 °C. Mixed cadmium and titanyl oxalate precipitation was complete at a pH of 3 at room temperature. Various physico-chemical techniques were employed to characterize the as-dried oxalate precursors and the final MTiO3 oxide powders (M = Mn, Fe, Co, Ni and Cd) obtained on thermal decomposition. All these experimental results relating to the synthesis and characterizations of MTiO3 oxides are presented in this paper. The results suggest that the reaction of potassium titanyl oxalate and metal chloride solutions may not lead to the formation of a single molecular precursor by direct salt elimination reaction in the pH range 1.5–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号