首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Nonlinear characteristic boundary conditions based on nonlinear multidimensional characteristics are proposed for 2‐ and 3‐D compressible Navier–Stokes equations with/without scalar transport equations. This approach is consistent with the flow physics and transport properties. Based on the theory of characteristics, which is a rigorous mathematical technique, multidimensional flows can be decomposed into acoustic, entropy, and vorticity waves. Nonreflecting boundary conditions are derived by setting corresponding characteristic variables of incoming waves to zero and by partially damping the source terms of the incoming acoustic waves. In order to obtain the resulting optimal damping coefficient, analysis is performed for problems of pure acoustic plane wave propagation and arbitrary flows. The proposed boundary conditions are tested on two benchmark problems: cylindrical acoustic wave propagation and the wake flow behind a cylinder with strong periodic vortex convected out of the computational domain. This new approach substantially minimizes the spurious wave reflections of pressure, density, temperature, and velocity as well as vorticity from the artificial boundaries, where strong multidimensional flow effects exist. The numerical simulations yield accurate results, confirm the optimal damping coefficient obtained from analysis, and verify that the method substantially improves the 1‐D characteristics‐based nonreflecting boundary conditions for complex multidimensional flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An attempt is made to find out the suitable entrainment and exit boundary conditions in laminar flow situations. Streamfunction vorticity formulation of the Navier–Stokes equations are solved by ADI method. Two‐dimensional laminar plane wall jet flow is used to test different forms of the boundary conditions. Results are compared with the experimental and similarity solution and the proper boundary condition is suggested. The Kind 1 boundary condition is recommended. It consists of zero first derivative condition for velocity variable and for streamfunction equation, mixed derivative at the entrainment and exit boundaries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the nonreflecting boundary conditions based upon fundamental ideas of the linear analysis are developed for gas dynamic equations, and the modified boundary conditions for Navier-Stokes equations are proposed as a substitute of the nonreflecting boundary conditions inside boundary layers near rigid walls. These derived boundary conditions are then applied to calculations both for the Euler equations and the Navier-Stokes equations to determine if they can produce acceptable results for the subsonic flows in channels. The numerical results obtained by an implicit second-order upwind difference scheme show the effectiveness and generality of the boundary conditions. Furthermore, the formulae and the analysis performed here may be extended to three dimensional problems. recommended by Prof. Cui Erjie  相似文献   

4.
In the numerical simulation of elastic wave propagation in the solid, it is essential to introduce absorbing boundary conditions to limit the large or unbounded domain of computation. In this paper, the absorbing boundaries for transversely isotropic media are composed of simple first-order partial differential operators, and each of the operators can perfectly absorb a plane wave outgoing at a certain angle. To test the absorbing ability, the reflection coefficient formulas for the quasi-P and quasi-S wave on the absorbing boundary are derived based on the potential functions theory of the elastic wave. Numerical examples show that the absorbing effect is good. The boundary conditions given here have a practical meaning.Supported by National Natural Science Foundation of China.  相似文献   

5.
In calculations of transonic flows it is necessary to limit the domain of computation to a size that is manageable by computers. At the boundary of the computational domain, boundary conditions are required to ensure a unique solution. Since wave solutions exist in the unsteady transonic flow field, incorrect boundary conditions may result in spurious reflections from the computational boundary. This may introduce errors into the solution. To prevent the spurious reflections, absorbing boundary conditions are often used on the computational boundary. In this paper we describe a method to derive absorbing boudary conditions for transonic calculations. We demonstrate both theoretically and numerically that the use of the absorbing boundary conditions will reduce the spurious reflections in the calculation.  相似文献   

6.
Gradient elasticity for a second gradient model is addressed within a suitable thermodynamic framework apt to account for nonlocality. The pertinent thermodynamic restrictions upon the gradient constitutive equations are derived, which are shown to include, besides the field (differential) stress–strain laws, a set of nonstandard boundary conditions. Consistently with the latter thermodynamic requirements, a surface layer with membrane stresses is envisioned in the strained body, which together with the above nonstandard boundary conditions make the body constitutively insulated (i.e. no long distance energy flows out of the boundary surface due to nonlocality). The total strain energy is shown to include a bulk and surface strain energy. A minimum total potential energy principle is provided for the related structural boundary-value problem. The Toupin–Mindlin polar-type strain gradient material model is also addressed and compared with the above one, their substantial differences are pointed out, particularly for what regards the constitutive equations and the boundary conditions accompanying the solving displacement equilibrium equations. A gradient one-dimensional bar sample in tension is considered for a few applications of the proposed theory.  相似文献   

7.
Aeroacoustics simulations require much more precise boundary conditions than classical aerodynamics. Two classes of non‐reflecting boundary conditions for aeroacoustics are compared in the present work: the characteristic analysis‐based methods and the Tam and Dong approach. In the characteristic methods, waves are identified and manipulated at the boundaries, whereas the Tam and Dong approach use modified linearized Euler equations in a buffer zone near outlets to mimic a non‐reflecting boundary. The principles of both approaches are recalled, and recent characteristic methods incorporating the treatment of transverse terms are discussed. Three characteristic techniques—the original Navier–Stokes characteristic boundary conditions (NSCBC) of Poinsot and Lele and two versions of the modified method of Yoo and Im—are compared with the Tam and Dong method for four typical aeroacoustics problems: vortex convection on a uniform flow, vortex convection on a shear flow, acoustic propagation from a monopole, and acoustic propagation from a dipole. Results demonstrate that the Tam and Dong method generally provides the best results and is a serious alternative solution to characteristic methods even though its implementation might require more care than the usual NSCBC approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Flow and pressure waves, originating due to the contraction of the heart, propagate along the deformable vessels and reflect due to tapering, branching, and other discontinuities. The size and complexity of the cardiovascular system necessitate a “multiscale” approach, with “upstream” regions of interest (large arteries) coupled to reduced-order models of “downstream” vessels. Previous efforts to couple upstream and downstream domains have included specifying resistance and impedance outflow boundary conditions for the nonlinear one-dimensional wave propagation equations and iterative coupling between three-dimensional and one-dimensional numerical methods. We have developed a new approach to solve the one-dimensional nonlinear equations of blood flow in elastic vessels utilizing a space-time finite element method with GLS-stabilization for the upstream domain, and a boundary term to couple to the downstream domain. The outflow boundary conditions are derived following an approach analogous to the Dirichlet-to-Neumann (DtN) method. In the downstream domain, we solve simplified zero/one-dimensional equations to derive relationships between pressure and flow accommodating periodic and transient phenomena with a consistent formulation for different boundary condition types. In this paper, we also present a new boundary condition that accommodates transient phenomena based on a Green’s function solution of the linear, damped wave equation in the downstream domain.  相似文献   

9.
For incompressible Navier–Stokes equations in primitive variables, a method of setting absorbing outflow boundary conditions on an artificial boundary is considered. The advection equations used on the outflow boundary are convenient for finite difference (FD) methods, where a weak formulation of a problem is inapplicable. An unsteady viscous incompressible Navier–Stokes flow in a channel with a moving damper is modeled. An accurate comparison and analysis of numerical and mechanical situations are carried out for a variety of boundary conditions and Reynolds numbers. The proposed outflow conditions provide that the problem with Dirichlet boundary conditions should be solved on each time step.  相似文献   

10.
We propose and illustrate a novel type of shoreline boundary conditions for Boussinesq‐type models. On the basis of characteristic equations of the non‐linear shallow water equations, boundary conditions are developed equations that can suitably model the motion of the instantaneous shoreline. Such boundary conditions are then implemented in a numerical solver for a specific set of Boussinesq‐type equations, which have been proved very effective for near‐shore modelling. Finally, a number of tests are performed to validate and illustrate the behaviour of the new conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The present paper deals with the use of the pseudo‐characteristic formulation of the Navier–Stokes and Euler equations recently introduced by Sesterhenn (Comput. Fluid. 2001; 30 :37–67) for the simulation of acoustic wave propagation. The emphasis is put on the formulation of an efficient method on structured curvilinear grids, along with the definition and implementation of efficient boundary conditions. The cases of inflow, outflow, rigid/compliant walls and walls with prescribed impedance are addressed. The proposed boundary conditions are assessed on generic cases. The pseudo‐characteristic formulation enables a straightforward and optimal use of high‐order upwind dispersion‐relation‐preserving schemes, yielding an efficient method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this paper is to give open boundary conditions for the incompressible Navier–Stokes equations. From a weak formulation in velocity–pressure variables, some natural boundary conditions involving the traction or pseudotraction and inertial terms are established. Numerical experiments on the flow behind a cylinder show the efficiency of these conditions, which convey properly the vortices downstream. Comparisons with other boundary conditions for the velocity and pressure are also performed.  相似文献   

13.
High-order local non-reflecting boundary conditions: a review   总被引:5,自引:0,他引:5  
Dan Givoli   《Wave Motion》2004,39(4):319-326
A common method for numerically solving wave problems in unbounded domains is based on truncating the infinite domain via an artificial boundary B, thus defining a finite computational domain, and using a special non-reflecting boundary condition (NRBC) on B. Low-order local NRBCs have been constructed and practiced since the 1970s. Exact non-local NRBCs were introduced in the 1980s. Only recently high-order local NRBCs have been devised. These NRBCs, despite being of an arbitrarily high-order, do not involve high derivatives owing to the use of specially defined auxiliary variables. This paper reviews the latter approach, explains its advantages compared to previous approaches, and discusses the different schemes which have been proposed in this context.  相似文献   

14.
The present paper examines the hydromagnetic three-dimensional flow induced by a stretched surface. An incompressible material saturates the porous medium. Velocity and thermal slip boundary conditions are considered. Suitable transformations are used to obtain the nonlinear ordinary differential equations. Series solutions of the resulting systems are constructed. The effects of various pertinent parameters on the axial velocity and temperature distributions are analyzed graphically. The skin friction and the Nusselt number are computed numerically and graphically.  相似文献   

15.
In simulations of propagating blast waves the effects of artificial reflections at open boundaries can seriously degrade the accuracy of the computations. In this paper, a boundary condition based on a local approximation by a plane traveling wave is presented. The method yields small artificial reflections at open boundaries. The derivation and the theory behind these so-called plane-wave boundary conditions are presented. The method is conceptually simple and is easy to implement in two and three dimensions. These non-reflecting boundary conditions are employed in the three-dimensional computational fluid dynamics (CFD) solver FLACS, capable of simulating gas explosions and blast-wave propagation in complex geometries. Several examples involving propagating waves in one and two dimensions, shock tube and an example of a simulation of a propagating blast wave generated by an explosion in a compressor module are shown. The numerical simulations show that artificial reflections due to the boundary conditions employed are negligible. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
We present a new auxiliary problem for the determination of the apparent stiffness of a Statistical Volume Element (SVE). The SVE is embedded in an infinite, homogeneous reference medium, subjected to a uniform strain at infinity, while tractions are applied to the boundary of the SVE to ensure that the imposed strain at infinity coincides with the average strain over the SVE. The main asset of this new auxiliary problem resides in the fact that the associated Lippmann–Schwinger equation involves without approximation the Green operator for strains of the infinite body, which is translation-invariant and has very simple, closed-form expressions. Besides, an energy principle of the Hashin and Shtrikman type can be derived from this modified Lippmann–Schwinger equation, allowing for the computation of rigorous bounds on the apparent stiffness. The new auxiliary problem requires a cautious mathematical analysis, because it is formulated in an unbounded domain. Observing that the displacement is irrelevant for homogenization purposes, we show that selecting the strain as main unknown greatly eases this analysis. Finally, it is shown that the apparent stiffness defined through these new boundary conditions “interpolates” between the apparent stiffnesses defined through static and kinematic uniform boundary conditions, which casts a new light on these two types of boundary conditions.  相似文献   

17.
A set of non-homogeneous radiation and outflow boundary conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are almost transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as non-dispersive and non-dissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is often necessary. The proposed non-homogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
This paper analyses the numerical stability of coupling procedures in modelling the thermal diffusion in a solid and a fluid with continuity of temperature and heat flux at the interface. A simple one-dimensional model is employed with uniform material properties and grid density in each domain. A number of different explicit and implicit algorithms are considered for both the interior equations and the boundary conditions. The analysis shows that in general these are stable provided that Dirichlet boundary conditions are imposed on the fluid and Neumann boundary conditions are imposed on the solid; in each case the imposed values are obtained from the other domains. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
IntroductionIn[1]therelationsofvariousstresstensors,theequationsofmomentumandthecorrespondingboundaryconditionsofvariousformsforclassicalcontinuummechanicsaresystematicallyderived.In[2]thegeneralizedcontinuumfieldtheoriesarecomprehensivelyreviewedandclar…  相似文献   

20.
High-order finite-difference schemes are less dispersive and dissipative but, at the same time, more isotropic than low-order schemes. They are well suited for solving computational acoustics problems. High-order finite-difference equations, however, support extraneous wave solutions which bear no resemblance to the exact solution of the original partial differential equations. These extraneous wave solutions, which invariably degrade the quality of the numerical solutions, are usually generated when solid-wall boundary conditions are imposed. A set of numerical boundary conditions simulating the presence of a solid wall for high-order finite-difference schemes using a minimum number of ghost values is proposed. The effectiveness of the numerical boundary conditions in producing quality solutions is analyzed and demonstrated by comparing the results of direct numerical simulations and exact solutions.This work was supported by the NASA Lewis Research Center Grant NAG 3-1267 and in part by the NASA Langley Research Center Grant NAG 1-1479 and the Florida State University through time granted on its Cray-YMP Supercomputer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号