首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure and geometry of some symmetric fluorinated singlet cyclopentadienyl and methylcyclopentadienyl cations are studied by the MNDO method. The structure of the potential energy surface (PES), which is a pseudorotation surface, is investigated. Extreme points of the PES, determining the PES barrier, correspond to structures with inverted frontier molecular orbitals. (Anti)aromaticity of fluorinated methylcyclopentadienyl cations is estimated using the Dewar-Breslow criterion. Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 6, pp. 1023–1030, November–December, 1996. Translated by L. Smolina  相似文献   

2.
Ab initio UMP2, RMP2, DFT/UB3LYP, and CBS-QB3 calculations have shown that the adiabatic potential energy surface (PES) of the 1,2,3-trifluorobenzene radical anion is a pseudorotation surface formed by nonplanar stationary structures. The low (approximately 2-4 kcal/mol) energy barriers in the path of pseudorotation imply manifestations of spectral exchange in the ESR spectra of this radical anion. The optically detected ESR of radical ion pairs was used to obtain the ESR spectrum of 1,2,3-trifluorobenzene radical anion in liquid squalane solution and to study temperature variations in the spectrum over the range of 243-325 K. The spectrum is a doublet of triplets with hfc constants of a(F(2)) = 29 mT and a(2F(1,3)) = 7.6 mT at T = 243 K. The experimental hfc constants are temperature-dependent. Calculations of the temperature dependence of hfc constants in the framework of the model of classical nuclei motion along the pseudorotation coordinate reproduce well the experimental data.  相似文献   

3.
The conformational landscapes of two commonly used ionic liquid ions, the anion bis(trifluoromethanesulfonyl)amide (Ntf2) and the cations N-propyl- and N-butyl-N-methylpyrrolidinium, were investigated using data obtained from Raman spectroscopy, molecular dynamics, and ab initio techniques. In the case of Ntf2, the plotting of three-dimensional potential energy surfaces (PES) and the corresponding molecular dynamics (MD) simulations confirmed the existence of two stable isomers (each existing as a pair of enantiomers) and evidenced the nature of the anion as a flexible, albeit hindered, molecule capable of interconversion between conformers in the liquid state, a result confirmed by the Raman data. In the case of the N,N-dialkylpyrrolidinium cations, the PES show a much more limited conformational behavior of the pyrrolidinium ring (pseudorotation). Nevertheless, such pseudorotation produces two stable isomers with the propyl and butyl side chains in completely different positions (axial-envelope and equatorial-envelope conformations). This result was also confirmed by Raman spectra analyses and MD simulations in the liquid phase. The implications of the conformational behavior of the two types of ions are discussed in terms of the solvation properties of the corresponding ionic liquids.  相似文献   

4.
Polyethersulfone (PES) membranes are prevalent in the field of water treatment owing to their exceptional separation efficiency, robust mechanical properties, and resistance to chemical degradation. Nevertheless, these membranes are prone to fouling, resulting in a decrease in both flux and ultrafiltration efficiency. In the present study, PES membranes are blended with poly (3-Sulfopropyl Methacrylate) (PSPMA) in various weight percentages (0%–3%) to improve their antifouling and ultrafiltration properties. The physicochemical properties of the blended membranes, including surface morphology, contact angle, hydrophilicity and surface energy are evaluated. The findings indicate that incorporation PSPMA results in an enhancement of the hydrophilic properties and surface charge of the PES membranes, assessed by employing Bovine Serum Albumin (BSA) as a representative protein. Modified blended membranes display greater Flux Recovery Ratio (FRR%) and exhibit superior fouling resistance. Under the same experimental conditions (0.2 MPa applied pressure), a pure water flux of 154.18 L·m−2·h−1 for PES/PSPMA membrane found substantially greater than pure PES membrane (103.52 L·m−2·h−1) along with Total Fouling Ratio (TFR) of 36% and 64.9% respectively. Exceptional antimicrobial efficacy for modified membranes is revealed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) using disc diffusion technique rendering them well-suited for water treatment applications.  相似文献   

5.
Summary Pentacoordinated molecules are thought to undergo intramolecular isomerization by the widely accepted Berry pseudorotation mechanism. Through our investigations, we have found that the actual pseudorotation for the PH4F system is more complex than that envisioned by Berry. The potential energy surface of PH4F is mapped out at the RHF/6-311G(d, p) level. According to the Berry mechanism, this system is expected to have two minima and two maxima; however, the system actually has two transition states and one global minimum. The minimum energy path from the highest transition state is followed to the second transition state, which in turn has a minimum energy path leading to the global minimum. Along the path between the two transition states there is a branching region. This portion of the potential energy surface is probed extensively.Dedicated to Prof. Klaus Ruedenberg  相似文献   

6.
In our recent study, an ABA amphiphilic triblock copolymer poly(vinyl pyrrolidone)‐b‐poly(methyl methacrylate)‐b‐poly(vinyl pyrrolidone) (PVP‐b‐PMMA‐b‐PVP) was synthesized and directly blended with polyethersulfone (PES) to prepare membranes. To further investigate the effects of surface energy and miscibility on the near‐surface composition profile of the membranes, evaporation membrane and phase inversion membrane of PES/PVP‐b‐PMMA‐b‐PVP were prepared by evaporating the solvent in a vacuum oven, and by a liquid–liquid phase separation technique, respectively. The surface composition and morphology of the membranes were investigated using XPS and tapping mode atomic force microscopy, and the surface segregations of the membranes were compared and discussed. For the evaporation membrane, PVP blocks were buried below the lower surface energy PMMA blocks and PES substrate at the airside surface. For the phase inversion membrane, however, the hydrophilicity of PVP blocks were the biggest driving force because of the high speed exchange between water and solvent, and present at the membrane surface. Thus, the modified PES membrane prepared by using phase inversion method has a layer of PVP block brushes on its surface and has the better anticoagulant property, which might improve the blood compatibility of the membrane and has potential to be used in blood purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A new approach to investigation of finite polyatomic systems such as clusters and biomolecules is suggested. The molecular dynamic trajectory of the system is sequentially locked in attraction basins on the potential energy surface (PES) subject to a certain strategy of system dislocation over the surface. The approach is illustrated by investigating the PES of the tetraalanine-peptide N-acetyl-(Ala)3-methylamide in aqueous solution. It is indicated that the PES of the system consists of a great number of local minima united in clusters, which correspond to different trans/cis conformations of the molecule and are separated by barriers with a height of 14 kcal/mole or more.  相似文献   

8.
Polyethersulfone (PES) membrane, one of the most important polymeric materials because of its good chemical resistance, thermal stability, mechanical, and film‐forming properties, has already been used in hemodialysis, tissue engineering, and artificial organs. In order to improve the blood compatibility of PES membrane, many amphiphilic block copolymers have been synthesized and used as additives for surface modification. The object of this study is to develop a hydrophilic PES membrane by blending a comblike amphiphilic block copolymer poly (vinyl pyrrolidone)‐block‐poly [acrylate‐graft‐poly (methyl methacrylate)]‐block‐poly‐(vinyl pyrrolidone) [PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP] synthesized by RAFT polymerization. The cytocompatibility performance of PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP modified PES membrane was evaluated, which showed better cytocompatibility compared with that of pristine PES membrane. Endothelial cells cultured on the modified membranes present improved growth in terms of scanning electron microscope observation, MTT assay, and confocal laser scanning microscope observation. These results indicate that the modified membrane has great potential application in blood‐contact fields such as hemodialysis and bio‐artificial liver supports. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Polyethersulfone (PES) has been widely used in membrane technology and used to purify water in water treatments application or as a dialyzer to purify blood in hemodialysis. In this work, PES was chemically modified by separately grafting two biomolecules, 4‐aminobenzenesulfonamide (ABS), and 4‐amino‐N‐(5‐methylisoxazol‐3‐yl)benzenesulfonamide (AMBS), on PES backbone, and these modified membranes were blended to unmodified PES, in 1:1 ratio, in order to obtain PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes. The first aim of this study is to measure the anticoagulant properties of the modified membrane by measuring the activated partial thromboplastin time (APTT) and prothrombin time (PT). The second aim of the study is to evaluate the antifouling properties of the modified PES membranes by examining its antimicrobial activity against two Gram‐negative bacteria, which are Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli); two Gram‐positive bacteria, which are Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus); and a fungus, which is Candida albicans (C. albicans). The results showed that grafting of ABS and AMBS improved overall the hydrophilicity properties of the modified PES membranes. PES‐b‐PES‐ABS membranes showed better anticoagulant properties with 13 seconds for PT and 38 seconds for APPT, in comparison with the control sample (pure plasma), which showed 12 seconds for PT and 30 seconds for APPT. For antimicrobial tests, both PES‐b‐PES‐ABS and PES‐b‐PES‐AMBS membranes did not show any antibacterial activity, but when zinc oxide (ZnO) nanoparticles were added to the modified PES membranes in concentrations between 3% to 5% w/w, PES‐b‐PES‐ABS‐ZnO (M‐4 and M‐5), and PES‐b‐PES‐AMBS‐ZnO (M‐8 and M‐9) nanocomposite membranes showed antibacterial activity against P. aeruginosa and S. aureus.  相似文献   

10.
The genetic algorithm optimization technique (GAOT) was used to build a new potential energy surface (PES) to the Na + HFNaF + H reaction. Quasi‐Classical Trajectories and Transition State Theory methods were used to obtain the dynamical properties and thermal rate coefficients (TRCs), respectively, of this new PES. These features were compared with the dynamical properties and TRCs available in the literature. It was found that the GAOT PES agrees very well with other PESs, in which the maximum difference found is smaller than 1.0 Å2 for the cross‐sections. These results endow the GAOT approach as a method to build PESs of reactive scattering processes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
The lowest singlet 11A′ and 11A″ potential energy surfaces (PES) of the O(1D)+HBr system have been ab initio computed. The complete active space self‐consistent field (CASSCF) method was used in most of the calculations, considering all the valence orbitals as active. The calculations were complemented with both analytical gradient calculations to characterize the stationary points and multireference configuration interaction (MRCI) calculations at selected nuclear geometries to improve the determination of the barrier heights and of the energetics. Electronic energy values for both PESs were then independently fitted by polynomial expansions in bond order coordinates. On the fitted surfaces quasi‐classical trajectories were separately run. Single‐surface calculations behave qualitatively different for the ground and the excited PES at low collision energies. A satisfactory agreement with existing experimental data was obtained by using the ground PES while calculations performed on the excited 11A″ PES worsened the agreement. However, when collision energy is increased, detailed experimental distributions are less well reproduced by calculations on the ground PES. This may imply the participation via nonadiabatic transitions of the 21A′ PES at higher energies while the adiabatic ground singlet PES well describes reactive scattering at low collision energy. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

12.
We propose a method for calculating the nonradiative decay rates for polyatomic molecules including anharmonic effects of the potential energy surface (PES) in the Franck-Condon region. The method combines the n-mode representation method to construct the ab initio PES and the nearly exact time-dependent density matrix renormalization group method (TD-DMRG) to simulate quantum dynamics. In addition, in the framework of TD-DMRG, we further develop an algorithm to calculate the final-state-resolved rate coefficient which is very useful to analyze the contribution from each vibrational mode to the transition process. We use this method to study the internal conversion (IC) process of azulene after taking into account the anharmonicity of the ground state PES. The results show that even for this semi-rigid molecule, the intramode anharmonicity enhances the IC rate significantly, and after considering the two-mode coupling effect, the rate increases even further. The reason is that the anharmonicity enables the C-H vibrations to receive electronic energy while C-H vibrations do not contribute on the harmonic PES as the Huang-Rhys factor is close to 0.  相似文献   

13.
Chemical processes which suffer the application of mechanical force are theoretically described by effective potential energy surface (PES). We worked out (W. Quapp, J. M. Bofill, Theor. Chem. Acc. 2016, 135, 113) that the changes due to the force for the minimums and for the saddle points can be described by Newton trajectories (NT) of the original PES. If the force is so high that the saddle point disappears into a shoulder then the mechanochemical action is fulfilled: the pulling force breaks down the reaction barrier. The point is named barrier breakdown point. Different families of NTs form corridors on the original PES which describe qualitative different actions of the force. The border regions of such corridors are governed by the valley‐ridge inflection points (VRI) of the surface. Here, we discuss all this on the basis of the well‐known Müller–Brown surface, and we describe a new kind of NT‐corridor.  相似文献   

14.
The synthesized phosphorylcholine copolymer composed of 2-methacryloyloxyethylphosphorylcholine (MPC) and n-butyl methacrylate (BMA), blended with polyethersulfone (PES), was used to fabricate antifouling ultrafiltration membranes. Water contact angle measurements confirmed that the hydrophilicity of the MPC-modified PES membranes was enhanced to certain extent. X-ray photoelectron spectroscopy (XPS) analysis verified the substantial enrichment of MPC at the surface of the MPC-modified PES membranes. The adsorption experiments indicated that the adsorption amounts of bovine serum albumin (BSA) on the MPC-modified PES membranes were dramatically decreased in comparison with the control PES membrane. Ultrafiltration experiments were carried out to investigate the effect of MPC modification on the antifouling and permeation properties of the PES membranes, it was found that the rejection ratio of BSA was decreased, the flux recovery ratio was remarkably increased, and the degree of irreversible fouling decreased from 0.46 to 0.09. In addition, the MPC-modified PES membranes could run several cycles without substantial flux loss.  相似文献   

15.
Summary A mathematical model of the logical structure of chemistry is suggested. The model is based on the phenomenon of convertibility between chemical species which is expressed by the so-called convertibility function . In the center of the model there is the potential energy (hyper)surface, PES. A heuristic modification of the general convertibility function is presented. Several algorithms have been developed for an analysis of PES which is described by paths, and for heuristic obtaining of PES paths. The notion ofK-barrier of conformational PES is introduced as well as an algorithm for its computation.  相似文献   

16.
An accurate three-dimensional potential energy surface (PES) for the He-Na2 van der Waals complex was calculated at the coupled cluster singles-and-doubles with noniterative inclusion of connected triple (CCSD(T)) level of theory. A mixed basis set, aug-cc-pVQZ for the He atom and cc-pCVQZ for the sodium atom, and an additional (3s3p2d1f) set of midbond functions were used. The computed interaction energies in 819 configurations were fitted to a 96-parameter analytic potential model by least squares fitting. The PES has two shallow wells corresponding to the T-shaped structure and the linear configuration, which are located at 12.5a 0 and 14 a 0 with depths of 1.769 and 1.684 cm−1, respectively. The who potential energy surface exhibits weak anisotropy. Based on the fitted PES, state-to-state differential cross sections were calculated. Supported by the Natural Science Foundation of Anhui Educational Committee (Grant No. 2006kj072A) and the Natural Science Foundation of Anhui Province (Grant No. 070416236)  相似文献   

17.
A global potential energy surface (PES) for the electronic ground state of Li2H system is constructed over a large configuration space. About 30 000 ab initio energy points have been calculated by MRCI‐F12 method with aug‐cc‐pVTZ basis set. The neural network method is applied to fit the PES and the root mean square error of the current PES is only 1.296 meV. The reaction dynamics of the title reaction has been carried out by employing time‐dependent wave packet approach with second order split operator on the new PES. The reaction probability, integral cross section and thermal rate constant are obtained from the dynamics calculation. In most of the collision energy regions, the integral cross sections are in well agreement with the results reported by Gao et al. The rate constant calculated from the new PES increases in the temperature range of present investigation.  相似文献   

18.
Multiblock copoly(ether‐sulfone)s ( PES s) bearing anchor units for the construction of dendritic blocks were synthesized by two‐step reactions: (1) synthesis of PES block with both phenoxide end‐groups; (2) chain extension and end‐capping of the block by use of excess novel hexafunctional agent, hexakis(4‐(4‐fluorophenylsulfonyl)phenyl)benzene. The optimum average block length (n) and amount (x) of the hexafunctional agent used for the synthesis of high‐molecular‐weight PES without crosslinking were n = 26 and x = 2.6 equiv, respectively. The dendritic blocks in the PES were constructed by the aromatic nucleophilic substitution reaction of the activated aromatic fluoride groups on the anchor units using 4‐tritylbenzenethiol. The clean substitution of the fluoride groups in the PES was confirmed by 1H NMR and 19F NMR. Three sulfonic acid groups were introduced on the pendant phenyl rings of the trityl groups in the PES by the reaction with chlorosulfonic acid. This is the first example of a dendritic PES bearing clusters of sulfonic acid groups only on the dendritic blocks. Cast films of presulfonated dendritic PES were strong and flexible, however, the membranes of sulfonated dendritic PES were brittle so that the conductivity measurements were not performed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6365–6375, 2008  相似文献   

19.
The potential energy surface (PES) for the cyclooctane molecule was comprehensively investigated at the Hartree–Fock (HF) level of theory employing the 3–21G, 6–31G, and 6–31G* basis sets. Six distinct true minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1), characterized through harmonic frequency analysis, were located on the multidimensional PES. Two transition state structures were also located on the PES for the cyclooctane molecule. Electron correlation effects were accounted for using the Møller–Plesset second-order perturbation theory (MP2) approach. The predicted global minimum energy structure on the ab initio PES for the cyclooctane molecule is the BC conformer. A gas phase electron diffraction study at 300 K suggested a conformational mixture while an NMR study in solution at 161.5 K predicted the BC conformer as the predominant form. The equilibrium constants reported in the present study, which were evaluated from the ab initio calculated total Gibbs free energy change values, were in good agreement with both experimental investigations. The ab initio results showed that the low temperature condition significantly favored the BC conformer while above room temperature both BC and CROWN structures can coexist. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 524–534, 1998  相似文献   

20.
The triatomic system NeI2 is studied under the consideration that the diatom is found in an excited electronic state (B). The vibrational levels (v=13, …, 23) are considered within two well-known theoretical procedures: quasi-classical trajectories (QCT), where the classical equations of motion for nuclei are solved on a single potential energy surface (PES), and the trajectory surface hopping (TSH) method, where the same are solved in a bunch of crossed vibrational PES (diabatic representation). The trajectory surface hopping fewest switches (TSHFS) is implemented to minimize the number of hoppings, thus allowing the calculations of hopping probability between the different PES's, and the kinetic mechanism to track the dissociation path. From these calculations, several observables such as, the lifetimes, vibrational and rotational energies (I2), dissociation channels, are obtained. Our results are compared with previous experimental and theoretical work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号