首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruin GJ 《Electrophoresis》2000,21(18):3931-3951
This review is devoted to the rapid developments in the field of microfluidic separation devices in which the flow is electrokinetically driven, and where the separation element forms the heart of the system, in order to give an overview of the trends of the last three years. Examples of microchip layouts that were designed for various application areas are given. Optimization of mixing and injection strategies, designs for the handling of multiple samples, and capillary array systems show the enormous progress made since the first proof-of-concept papers about lab-on-a-chip devices. Examples of functional elements for on-chip preconcentration, filtering, DNA amplification and on-chip detection indicate that the real integration of various analytical tasks on a single microchip is coming into reach. The use of materials other than glass, such as poly(dimethylsiloxane) and polymethylmethacrylate, for chip fabrication and detection methods other than laser-induced fluorescence (LIF) detection, such as mass spectrometry and electrochemical detection, are described. Furthermore, it can be observed that the separation modes known from capillary electrophoresis (CE) in fused-silica capillaries can be easily transferred to the microchip platform. The review concludes with an overview of applications of microchip CE and with a brief outlook.  相似文献   

2.
Nan Lu  Jörg P. Kutter 《Electrophoresis》2020,41(24):2122-2135
This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.  相似文献   

3.
Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.  相似文献   

4.
This review highlights recent developments and applications of on-line sample preconcentration techniques to enhance the detection sensitivity in microchip electrophoresis (MCE); references are mainly from 2008 and later. Among various developed techniques, we focus on the sample preconcentration based on the changes in the migration velocity of analytes in two or three discontinuous solutions system, since they can provide the sensitivity enhancement with relatively easy experimental procedures and short analysis times. The characteristic features of the on-line sample preconcentration applied to microchip electrophoresis (MCE) are presented, categorized on the basis of "field strength-" or "chemically" induced changes in the migration velocity. The preconcentration techniques utilizing field strength-induced changes in the velocity include field-amplified sample stacking, isotachophoresis and transient-isotachophoresis, whereas those based on chemically induced changes in the velocity are sweeping, transient-trapping and dynamic pH junction.  相似文献   

5.
Szántai E  Guttman A 《Electrophoresis》2006,27(24):4896-4903
In the past few years, electrophoresis microchips have been increasingly utilized to interrogate genetic variations in the human and other genomes. Microfluidic devices can be readily applied to speed up existing genotyping protocols, in particular the ones that require electric field-mediated separations in conjunction with restriction fragment analysis, DNA sequencing, hybridization-based techniques, allele-specific amplification, heteroduplex analysis, just to list the most important ones. As a result of recent developments, microfabricated electrophoresis devices offer several advantages over conventional slab-gel electrophoresis, such as small sample volume requirement, low reagent consumption, the option of system integration and easy multiplexing. The analysis speed of microchip electrophoresis is significantly higher than that of any other electric field-mediated separation techniques. State-of-the-art microfluidic bioanalytical devices already claim their place in most molecular biology laboratories. This review summarizes the recent developments in microchip electrophoresis methods of nucleic acids, particularly for rapid genotyping, that will most likely play a significant role in the future of clinical diagnostics.  相似文献   

6.
Wall coating for capillary electrophoresis on microchips   总被引:2,自引:0,他引:2  
Dolník V 《Electrophoresis》2004,25(21-22):3589-3601
This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip. It deals with both dynamic and permanent coatings and concentrates on the most frequently used microchip materials including glass, poly(methyl methacrylate), poly(dimethyl siloxane), polycarbonate, and poly(ethylene terephthalate glycol). Characterization of the channel surface by measuring electroosmotic mobility and water contact angle of the surface is included as well. The utility of the microchips with coated channels is demonstrated by examples of CE separations on these chips.  相似文献   

7.
This review summarizes recent developments and applications of capillary and microchip electroseparation methods in proteomic and peptidomic analyses since the year 2015 to ca. mid 2018. Sample preparation procedures for the removal of interfering components or for pre‐fractionation and preconcentration of proteins and peptides of interest are discussed. The innovations in coupling of capillary or microchip electroseparation methods with different modes of mass spectrometry detection are covered. In addition, significant recent applications of capillary electromigration methods in both bottom‐up and top‐down proteomics as well as in determinations of post‐translational modifications of proteins are presented. Moreover, several examples of the utilization of capillary electromigration methods coupled with mass spectrometry detection for clinical proteomics and peptidomics are described.  相似文献   

8.
Baena B  Cifuentes A  Barbas C 《Electrophoresis》2005,26(13):2622-2636
This review article addresses the different capillary electrophoretic methods that are being used for the study of both short-chain organic acids (including anionic catecholamine metabolites) and fatty acids in biological samples. This work intends to provide an updated overview (including works published until November 2004) on the recent methodological developments and applications of such procedures together with their main advantages and drawbacks. Moreover, the usefulness of CE analysis of organic acids to study and/or monitor different diseases such as diabetes, new-borns diseases or metabolism disorders is examined. The use of microchip devices and CE-MS couplings for organic acid analysis is also discussed.  相似文献   

9.
许旭  陈钢  刘浩 《色谱》2020,38(10):1154-1169
药物分析是毛细管电泳(CE)的重要应用领域,所有CE分离模式与检测方法都在各种药物及其不同形式样品的分离分析中显示出特色和应用能力。该文从药品分析领域中的小分子药物(包括手性药物)及其有关物质、中药与天然产物、体内药物分析、生物制品药物分析等几个方面,综述了近几年CE在这些传统药物分析领域应用的研究进展。限于篇幅,未包括现代药物分析研究比较活跃的理化常数测定、亲和毛细管电泳与结合常数研究(药物与受体间的相互作用等)、临床生物标志物分析、代谢组学和微流控芯片CE分析等方面的内容。根据目前传统药物分析领域的发展,该文关注到近期CE在顺应药物分析的法规需求、电容耦合非接触电导检测(CE-C4 D)、改进检测灵敏度与精密度、CE-十二烷基硫酸钠(SDS)毛细管电泳、全柱成像毛细管等电聚焦(icIEF)、抗体分析等方面的新进展。该文结合文献,讨论了目前传统药物分析领域的需求,以及CE在其中的地位、挑战和机遇。对目前CE主要作为互补分析方法在化学药和中药分析中的应用研究提出了一些针对性的建议,期待CE在生物制品分析中的特色和能力得到进一步的发挥,同时提出CE-MS和对CE分析重复性改进等新进展可能对未来CE应用领域的大幅度扩展。该综述主要涉及近3年(2017年1月到2020年2月)及部分2016年的相关文献。  相似文献   

10.
This review article focuses on advances and technical developments of the realm of membrane extraction techniques for the analytes that are (made) amenable to gas chromatographic analysis, and sheds light on the analytical applications to biological and environmental samples. In this review, the state of the art in this growing area of membrane extraction for gas chromatography is presented and several selected examples from our work and that of other groups are discussed. The published articles on the techniques and their applications, found in the scientific literature between the years 2000 and May 2007 and cited in over than 100 references, are perused and commented. A good deal of light will be thrown on the novelty of the techniques, instrumentations and applications. The mentioned techniques are mainly microporous membrane liquid-liquid extraction, extracting syringe, two-phase hollow-fibre-protected liquid-phase microextraction and its modifications, and membrane extraction with sorbent interface and its variants. The merits and demerits of the techniques will be highlighted.  相似文献   

11.
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.  相似文献   

12.
Ghanim MH  Abdullah MZ 《Talanta》2011,85(1):28-34
Recent advances in microfluidic systems, particularly in the Micro Total Analysis System (μTAS) or Lab On a Chip (LOC), drive the current analysis tools and equipment towards miniaturization, rapid at-line testing and mobility. The state-of-the-art microfluidic technology targets a wider range but smaller volumes of analytes, making the analytical procedure relatively easier and faster. This trend together with faster electronics and modern instrumentation systems will make real-time and in situ analysis a definite possibility. This review focuses on microchip capillary electrophoresis with amperometric detection (MCE-AD) for the detection of DNA and other electroactive analytes. The problems associated with the microchip design, in particular the choice of materials and the configuration of electrodes are discussed thoroughly and solutions are proposed. Significant developments in the related areas are also covered and reviewed critically.  相似文献   

13.
In this work, the synergy of one mature example from "lab-on-chip" domain, such as CE microchips with emerging miniaturized carbon nanotube detectors in analytical science, is presented. Two different carbon electrodes (glassy carbon electrode (GCE) 3 mm diameter, and screen-printed electrode (SPE) 0.3 mm x 2.5 mm) were modified with multiwalled carbon nanotubes (MWCNTs) and their electrochemical behavior was evaluated as detectors in CE microchip using water-soluble vitamins (pyridoxine, ascorbic acid, and folic acid) in pharmaceutical preparations as representative examples. The SPE modified with MWCNT was the best electrode for the vitamin analysis in terms of analytical performance. In addition, accurate determination of the three vitamins in four different pharmaceuticals was obtained (systematic error less than 9%) in only 400 s using a protocol that combined the sample analysis and the methodological calibration.  相似文献   

14.
Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI).  相似文献   

15.
Overview of capillary electrophoresis and capillary electrochromatography.   总被引:2,自引:0,他引:2  
This paper provides an overview on the current status of capillary electrophoresis (CE) and capillary electrochromatography (CEC). The focus is largely on the current application areas of CE where routine methods are now in place. These application areas include the analysis of DNA, clinical and forensic samples, carbohydrates, inorganic anions and metal ions, pharmaceuticals, enantiomeric species and proteins and peptides. More specific areas such the determination of physical properties, microchip CE and instrumentation developments are also covered. The application, advantages and limitations of CEC are covered. Recent review articles and textbooks are frequently cited to provide readers with a source of information regarding pioneering work and theoretical treatments.  相似文献   

16.
High temperature liquid chromatography (HTLC) exists in a temperature region beyond ambient (ca. 40 degrees C) and below super critical temperatures. The promises of HTLC, such as increased analysis speed, enhanced separation productivity, "green" LC with pure water mobile phases coupled to universal FID detection, and fast analysis of complex samples by combination with fast 2-D techniques, have become an option for routine practice. The focus of this paper is to review the key developments that have made the application of HTLC a practical technique and draw attention to new developments in 2-D techniques that incorporate HTLC that offer an opportunity to vastly increase the usefulness of HPLC for the analysis of complex samples.  相似文献   

17.
The review brings a comprehensive survey of the recent developments of high-performance electroseparation methods in capillary and microchip formats: zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography and electrochromatography. Applications of these techniques to analysis, isolation, purification and physicochemical and biochemical characterization of peptides are described. Advances in the investigation of electromigration properties of peptides, and in the methodology of their analysis, such as sample preparation, adsorption suppression, EOF control and detection, are presented. New developments, in particular, CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.  相似文献   

18.
The diagnosis of Duchenne muscular dystrophy (DMD) has historically utilized either PCR or requires Southern blot analysis, a southern blot analysis, however, is not amenable to incorporation in a microdevice format. A PCR amplification-based method has been developed, and we have previously coupled this amplification with microchip separation of the PCR fragments for DMD diagnosis. Diagnoses of affected patients were performed by comparing exon concentrations to those of control samples amplified at the same time. To accurately identify mutations in patient samples, this work established normal ranges for the concentration of each amplified exon fragment using control samples amplified over successive days. Our studies show that the number of cycles used in the amplification process affects this range. Affected patient samples were analyzed using these normal ranges and the mutations detected by Southern blot analysis were also diagnosed using the microchip separation method.

Employing the microchip separation method decreases the time required for the analysis, but the time required for DNA purification and PCR amplification must also be decreased for faster total analysis of patient samples. Development of microchip methods for these processing steps is one approach for reducing the individual times, while also providing the possibility of integrating these steps in a single device. Here we report on the microchip extraction of genomic DNA from whole blood using a novel sol–gel matrix that is easily formed in microdevices. IR-mediated PCR amplification of a β-globin fragment from genomic DNA followed by electrophoretic analysis on a single integrated microdevice is presented for the first time. Work towards the development of a micro-total analysis device for DMD diagnosis, through integration of all processing steps on a single device, is also discussed.  相似文献   


19.
A review with 75 references is presented that deals with the reported methods for analysis of some important central nervous system (CNS) drugs in biological fluids utilizing stir bar sorptive extraction (SBSE) technique covering the years from 2000 to 2008. The theoretical aspects of SBSE, as well as an significant number of applications have been published, showing the advantages of this technique over the classical extraction techniques (liquid–liquid extraction (LLE) and solid-phase extraction (SFE). In this review, recent SBSE developments and a focus on the development of new instrumental approaches and sorbent phases are presented.  相似文献   

20.
Microchip capillary electrophoresis/electrochemistry   总被引:8,自引:0,他引:8  
Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号