首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential to induce non-nuclear changes in mammalian cells has been examined for (1) UVA1 radiation (340–400 nm, UVASUN 2000 lamp), (2) UVA + UVB (peak at 313 nm) radiation (FS20 lamp), and (3) UVC (254 nm) radiation (GI5T8 lamp). The effects of irradiation were monitored in vitro using three strains of L5178Y (LY) mouse lymphoma cells that markedly differ in sensitivity to UV radiation. Comparisons were made for the effects of approximately equitoxic fluences that reduced cell survival to 1–15%. Depending on the cell strain, the fluences ranged from 830 to 1600 kJ/m2 for the UVASUN lamp, 75 to 390 J/m2 for the FS20 lamp and 3.8 to 17.2 J/m2 for the G15T8 lamp. At the exposure level used in this study, irradiation with the UVASUN, but not the FS20 or G15T8, lamp induced a variety of non-nuclear changes including damage to cytoplasmic organelles and increased plasma membrane permeability and cell lysis. Cell lysis and membrane permeabilization were induced by the UVA1 emission of the UVASUN lamp, but not by its visible + IR components (>400 nm). The results show that the plasma membrane and other organelles of LY cells are highly sensitive to UVA1 but not to UVB or UVC radiation. Also UVA1, but not UVB or UVC radiation, causes rapid and extensive lysis of LY cells. In conclusion, non-nuclear damage contributes substantially to UVA cytotoxicity in all three strains of LY cells.  相似文献   

2.
Abstract— A broad-band UVA source that emits primarily350–400 nm radiation and no measurable radiation below 340 nm was used to test toxicity and mutagenicity at the thymidine kinase locus in L5178Y, subclone 3.7.2C (TK+/-) mouse lymphoma cells. Cells were exposed to a fluence of 0 to 80 × 104 J/m2. The relationship between UVA fluence and survival was found to have a shoulder region followed by an exponential decrease in survival at higher fluence levels. An exposure-dependent increase in mutation was observed with increasing fluences from 0 to about 60 × 104 J/m2. An approximately 3- to 4-fold increase in mutations (trifluorothymidine resistance) over unexposed, control cells was seen at a fluence that resulted in 90% cell killing. We conclude that UVA radiation is a mutagen in the L5178Y mouse lymphoma cells used in this study.  相似文献   

3.
Abstract— Seven axenic wild-type and repair-deficient mutant strains of the cellular slime mold Dictyostelium discoideum have been treated with the furocoumarin 8-methoxypsoralen (8-MOP) up to 50 μg/mζ and then exposed to near ultraviolet light (UVA 320-400 nm) up to 21 kJ/m2. Fluence-response survival curves exhibit shoulders at lower fluences and an exponential lethal response at higher fluences. Neither the psoralen alone nor the irradiation alone produced any measurable lethal effect. Wild-type strains, which show resistance to 254 nm UV and gamma radiation, also show resistance to psoralen plus UVA. The moderate sensitivity of a rad D repair-deficient mutant strain and the extreme sensitivity of a rad B mutant strain to 8-MOP plus UVA parallel their responses to UV and gamma radiation. However a rad C mutant which is sensitive to UV, exhibits wild-type response to photoactivated psoralen.  相似文献   

4.
Abstract— Daily exposures to relatively small suberythemogenic fluences of UVA (50–200 kj/m2) for 8 days resulted in cumulative morphological skin alterations indicative of early tissue injury. Histologically, irradiated skin revealed epidermal hyperplasia, inflammation and deposition of lysozyme along the dermal elastic fiber network. Sunburn cells were also present within the epidermis. These changes were quantified by image analysis and were found to be related to the cumulative UVA fluence. A long UVA waveband (UVAI, 340–400 nm) was as effective as a broad UVA band (320–400 nm), suggesting that these changes are induced by longer UVA wavelengths.  相似文献   

5.
Abstract— The irradiation of plant cells with UV radiation (254nm) causes various solutes to leak from the cells. Vesicles enriched in plasma membranes were prepared from wheat roots. These were used to determine whether UV radiation alters membrane function by direct action on the membranes and to distinguish between the chemical effects produced by high and low fluences of UV. The plasma membrane-associated K+-stimulated ATPase was very sensitive to UV radiation (100% inhibition with 1.35kJ/m2). ATPase activity measured in the absence of K+ and K+-stimulated ATPase activity measured in the presence of diethylstilbestrol were much less sensitive. Lipid breakdown, as measured by malondialdehyde production, occurred only at UV fluences greater than 1.8 kJ/m2.  相似文献   

6.
Abstract— The effects of repeated UV exposure on the skin of the European crested newt, Triturus cristatus carnifex , have been investigated. The animals were irradiated 3 times per week with a Westing-house FS40T12 fluorescent sun lamp (wavelength spectrum 275–350 nm). Two groups of animals received the same total fluence of 1.3 × 105 J/m2 in single fluences of either 1570 J/m2 (group A) or 9430 J/m2 (group C), and one group received a total fluence of 2.6 × 105 J/m2 in single fluences of 4710 J/m2 (group B). All the animals were killed 7 months after the first UV exposure, but at different intervals after the last exposure. Striking epidermal hyperplasia was found in the newts irradiated at the lower fluence rate (group A). In the animals given the higher total fluence (group B), the most prominent skin changes were dermal fibrosis and irregular thinning and thickening of the epidermis. No significant skin changes were found in group C., in which if there had been UV lesions, they had been repaired during the 5 month interval between the last irradiation and the killing of the animals. No skin tumors developed in any experimental group.  相似文献   

7.
Abstract. The respiration rates and respiratory control ratios of isolated bean mitochondria have been measured following exposure to 0, 150, 300 and 900 J/m2 of far UV radiation (190–300 nm) from a mercury vapour light source with 90% total radiant intensity at 254 nm. Loss of respiratory control occurred at 150 J/m2 and inhibition of respiration was significant at the highest exposure dosage. The uptake of both 45Ca and 85Sr have been measured following a 10min incubation of isolated mitochondria with 2 m M cation. Significant decreases in cation accumulation were observed following exposure to 900 J/m2. The effect seemed to be associated with loss of active transport of the ions as a result of respiratory uncoupling or reduced electron transport. There was no significant effect of storage on respiration or ion transport nor was there any indirect effect of irradiated suspending medium on mitochondria.  相似文献   

8.
Abstract— An immunochemical assay, i.e. sandwich enzyme-linked immunosorbent assay, has been modified to detect UV-induced damage in cellular DNA of monolayer-grown human melanocytes. The method is based on the binding of a monoclonal antibody to single-stranded DNA. The melanocytes derived from human foreskin of skin type II individuals were suspended and exposed to UVA, UVB, solar-simulated light or γ-rays. Following physiological doses of UVA, UVB or solar-simulated light, a dose-related DNA unwinding comprising a considerable number of single-strand breaks (ssb) was observed. No correlation was found between different seeded cell densities or different culturing periods and the UVA sensitivity of the cells. After UVA irradiation, 0.07 ssb/1010 Da/kJ/m2 were detected and after UVB irradiation 1.9 ssb/1010 Da/kJ/m2 were seen. One minimal erythema dose of solar-simulated light induced 2.25 ssb/1010 Da. Our results from melanocytes expressed in ssb/Da DNA are comparable and have the same sensitivity toward UVA as well as toward UVB as nonpigmented skin cells. As low doses of UVA have already been shown to induce detectable numbers of ssb, this assay is of great interest for further investigations about the photoprotecting and/or photosensitizing effects of melanins in human melanocytes derived from different skin types.  相似文献   

9.
Pretreatment of human cells with near UV radiation (UVA) in fluences exceeding 5 × 104 Jm−2 caused a decrease in the amount of the unscheduled DNA synthesis induced by far UV radiation (UVC). The DNA repair synthesis, as measured by the incorporation of [3H] -thymidine, is reduced by nearly a factor of 2 for a UVA radiation exposure of 1.5 × 105 Jm−2. Since solar UVA fluence rate is rather independent of latitude, this figure corresponds to a UVA exposure time of 50-60 min from noon sunlight in the summer time.  相似文献   

10.
Abstract— The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in purified calf thymus DNA and HeLa cells were measured following exposure to either UVC, UVB or UVA wavelengths. This DNA damage was quantitated using HPLC coupled with an electrochemical detector. The 8-oxodGuo was induced in purified DNA in a linear dose-dependent fashion by each portion of the UV spectrum at yields of 100, 0.46 and 0.16 8-oxodGuo per 105 2'-deoxyguanosine (dGuo) per kJ/m2 for UVC, UVB and UVA, respectively. However, the amount of 8-oxodGuo in HeLa cells irradiated with these UV sources decreased to approximately 2.0, 0.013 and 0.0034 8-oxodGuo per 105 dGuo per kJ/m2, respectively. In contrast, the levels of cyclobutyl pyrimidine dimers were similar in both irradiated DNA and cells. Therefore, 8-oxodGuo is induced in cells exposed to wavelengths throughout the UV spectrum although it appears that protective precesses exist within cells that reduce the UV-induced formation of this oxidative DNA damage. Cell survival was also measured and the number of dimers or 8-oxodGuo per genome per lethal event determined. These calculations are consistent with the conclusion that dimers play a major role in cell lethality for UVC- or UVB-irradiated cells but only a minor role in cells exposed to UVA wavelengths. In addition, it was found that the relative yield of 8-oxodGuo to dimers increased nearly 1000-fold in both UVA-irra-diated cells and DNA compared with cells subjected to either UVC or UVB. These results are supportive of the hypothesis that 8-oxodGuo, and possible other forms of oxidative damage, play an important role in the induction of biological effects caused by wavelengths in the UVA portion of the solar spectrum.  相似文献   

11.
Alteration of uracil-DNA glycosylase activity by uracil dimers in DNA   总被引:3,自引:0,他引:3  
Abstract The formation of colonies in solid medium was used as a criterion of viability to determine the effect of ultraviolet radiation on Trichomonas vaginalis. Both viability (colony) counts and total cell (hemocytometer) counts were used to estimate physiological ages of cell populations to be irradiated. Washed-cell suspensions in 0.6% saline were exposed to far- (254 nm) and near-UV (300–400 nm) radiation and dose-response survival curves were constructed from colony counts. The effect of far-UV was found to be independent of growth phase with the D0 for exponential, early stationary, and late stationary cells 2.6, 2.7, and 2.7 J/m2, respectively. Survival to near-UV increased with the age of cells with the estimated D50 being 216 J/m2 for exponential cells, 1360 J/m2 for early stationary cells, and 4200 J/m2 for late stationary cells. Exponential cells of Trichomonas gallinae irradiated with near-UV had a D50 of 340 J/m2. T. vaginalis is highly sensitive to far-UV relative to protozoa. T. vaginalis and T. gallinae are highly sensitive to near-UV relative to other microorganisms.  相似文献   

12.
Abstract— ICR 2A frog and normal human skin fibroblasts were exposed to either 5 J/m2 of 254 nm UV or 50 kJ/m2 of the Mylar-filtered solar UV wavelengths produced by a fluorescent sunlamp. Following these approximately equitoxic treatments, cells were incubated in medium containing the DNA synthesis inhibitors hydroxyurea (HU) and 1–β-D-arabinofuranosyl cytosine (ara C) for 0–20 min (human fibroblasts) or 0–4 h (frog cells) to accumulate DNA breaks resulting from enzymatic incision during excision repair. It was found that breaks were formed in human cells at about a 200-f-old higher rate compared with the ICR 2A cells indicating a relatively low capacity for excision repair in the frog cells. In addition, the rate of DNA break formation in solar UV-irradiated cells was only one-third of the level detected in 254 nm-irradiated cells. This result is consistent with the conclusion that the pathway(s) involved in the repair of solar UV-induced DNA damages differs from the repair of lesions produced in cells exposed to 254 nm UV.  相似文献   

13.
Abstract— Previous work obtained from Chinese hamster V-79 cells indicated that, immediately following exposure, UV-induced lesions acted as blocks to elongation of nascent strands, but gradually lost that ability over a 10 h period after exposure to 10 J/m2. The work reported herein attempted to examine possible cell cycle mediated alterations in the recovery of DNA synthesis. Kinetic incorporation of radiolabeled thymidine studies indicated that there may have been a more rapid recovery of DNA synthesis in cells irradiated in G1 or G2 vs cells irradiated in S phase. DNA fiber autoradiograms prepared from synchronous cells indicated that after irradiation in any phase of the cell cycle, the length of newly synthesized DNA was equal to control lengths 1 h after exposure to 5.0 J/m2 (or 1 h after entering S phase for cells irradiated in G1 or G2). This observed recovery was not solely due to an excision process. No cell cycle mediated difference in the number of dimers induced or removed as a function of cell cycle position was observed. These results appear to be consistent with a continuum of effects, with initiation effects dominating the response at low fluences, gapped synthesis at intermediate fluences and elongation inhibition at high fluences. The fluences at which each event dominates may be cell-line specific.  相似文献   

14.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

15.
Abstract— Exposure to visible light after UV-irradiation showed a remarkable effect on UV-induced sister chromatid exchanges (SCEs). After 6-h exposure to visible light (3 × 105 J/m2), two-thirds of the UV-induced SCEs were prevented, confirming Kato's findings. Exposure to visible light before UV irradiation had no effect. This effect of visible light on UV-induced SCEs was temperature dependent, suggesting the presence of enzymatic photoreactivation.  相似文献   

16.
Abstract— Thc frequency of spontaneous and ultraviolet radiation (UVR)-induced mutation at the hprt locus was determined in control and denV-transfected, repair-proficient murine fibroblasts. Control cells removed an average of 25% of pyrimidine dimers induced by exposure to 150 J/m2UVR from an FS40 sunlamp within 24 h; under the same conditions of induction and repair, denV-transfected cells removed an average of 71% of pyrimidine dimers. Control cells were somewhat more resistant than denV-transfected cells to killing by UVR. The average frequency of spontancous mutation at the hprt locus for control and denV-transfected cells was 3 and 15 6-thioguanine (6-TG)-resistant colonies per 106 surviving cells, respectively; there was no statistically significant difference between control and dcnV-transfected cells. However, after exposure to 75 or 150 J/m2 UVR, denV-transfected cells had a significantly lower frequency of mutation to 6-TG resistance. After exposure to a fluence of 75 J/m2, the average frequency of UVR-induced mutation at the hprt locus was 166 mutant colonies per loh surviving cells for control cells and 92 mutant colonies for denV-transfectcd cells; after 150 J/m2, control cells had 205 6-TG-resistant colonies per 106 cells, while dmV-transfected cclls had 61 mutant colonies. These results demonstrate that UVR-induced pyrimidine dimers are mutagenic photoproducts in mammalian cells.  相似文献   

17.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

18.
Abstract—A single 3- to 20-hr exposure of line NCTC 9266 mouse cells to cool-white fluorescent light (4.6 W/m2) produces chromatid breaks and exchanges. The effective wavelength is in the visible range and coincides with the mercury emission peak at 405 nm. Increasing light intensity from 4.6 W to 15.3 W/m2 for 20 h causes a concomitant increase both in production of chromosome damage and formation of hydrogen peroxide (H2O2) in the serum-free medium. Cells washed free of medium and illuminated in saline for 3 h show chromosome damage to the same extent as cells illuminated in culture medium. Addition of catalase during the exposure period of 3 h eliminates the light-induced damage. We conclude that the light-induced chromatid breaks and exchanges result from H2O2 production within the cell and that exogenous catalase can enter the cell and prevent the damage.  相似文献   

19.
It has been previously shown that a metabolite of piroxicam but not piroxicam itself causes phototoxicity to cells in vitro after exposure to UVA (320–400 nm) radiation. The phototoxicity mechanism for this metabolite, 2-methyl-4-oxo-2H-l,2-benzothiazine-l,l-dioxide (Compound I), was investigated. In vitro phototoxicity to human mononuclear cells was assayed using 0.5 m M Compound I and UVA radiation. The UVA fluence required for phototoxicity of Compound I was lower by a factor of 2-3 in D2O buffer compared to H2O buffer. Superoxide dismutase and mannitol, which remove O2- and OH", respectively, do not decrease the phototoxicity. The photodecomposition of Compound I was inhibited by sodium azide, enhanced by human serum albumin and unaffected by mannitol. Stable photoproducts of Compound I were not toxic to the cells. The quantum yield of singlet oxygen based on its emission at 1270 nm was 0.19 and 0.35 for Compound I and s2 ± 10-3 and 10-2 for piroxicam in D2O and C6H6, respectively. While the extremely low quantum yield for singlet oxygen from piroxicam appears to account for its lack of phototoxicity, the phototoxicity mechanism for its metabolite, Compound I, most likely does involve singlet oxygen.  相似文献   

20.
THE PHOTODYNAMIC EFFECT OF HEMATOPORPHYRIN ON DNA   总被引:1,自引:0,他引:1  
Abstract— Breakage of DNA in vitro and inside E. colt cells has been determined after exposure to monochromatic 365 nm light in the presence of 10 µM hematoporphyrin. When measured by alkaline sucrose sedimentation, the yields of breaks were 1.4 × 10-12 per dalton and per J/m2 for Col El-DNA in vitro and 5.9 × 10-3 per dalton and per J/m2 for superinfecting phage Λ DNA inside E. coli cells made permeable by toluene. No breaks were found by neutral sucrose sedimentation, demonstrating that the lesions represent alkali-labile bonds. The majority of the alkali-labile bonds were induced by singlet oxygen, as evidenced by the several-fold higher yield obtained in D2O-containing buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号