首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Most established techniques for analyzing sound transmission in ducts containing orifices plates are only applicable for plane wave propagation. Once the wavelength of the sound approaches the cross section of the duct, higher order mode propagation in the system must be considered in the analysis. This is a numerically intensive activity if fully coupled calculations of the higher order modes are undertaken. This investigation estimates the acoustic fields in a duct with a simple orifice plate installed using an uncoupled model to estimate the higher order mode contribution. The uncoupled model is then used as the basis for a hybrid decomposition approach to estimate the sound field in the regions before and after the orifice plate installed in a circular duct. This approach is applied to a duct, excited by a point source over a wide frequency range, containing a single orifice plate installed a distance inside the duct. Different orifice plates with one, two and multiple openings are investigated. Of particular interest is the location of the point source relative to the duct axis. If the source is located concentric to the duct axis then, without any orifice plate present, only axially symmetric higher order modes may be excited in the duct. Thus, the investigation considers the point source located in the concentric position and in eccentric positions to vary the contribution from the different types of higher order mode. Estimates of the acoustic fields in the duct obtained using the hybrid decomposition approach are compared with measured data and the applicability of using an uncoupled estimate for the acoustic fields is commented on.  相似文献   

3.
The dispersion curves for harmonic waves in composite cylindrical elastic solids with a coating, made of non traditional soft material (nematic elastomer) are investigated. The obtained earlier low frequency effective model of nematics is used with taking into account the anisotropy, viscosity and internal rotation of long molecules of material. The impedance matrices, dispersion equations and asymptotics of speeds and wavenumbers in the long-wave approximation are derived for the further numerical analysis. The obtained quasi resonance effects of the first and of the second kinds are discussed for waves of different polarization.  相似文献   

4.
5.
Guided by similarities between electronic and classical waves, a numerical code based on a formalism proven to be very effective in condensed matter physics has been developed, aiming to describe the propagation of elastic waves in stratified media (e.g. seismic signals). This so-called recursive Green function technique is frequently used to describe electronic conductance in mesoscopic systems. It follows a space-discretization of the elastic wave equation in frequency domain, leading to a direct correspondence with electronic waves travelling across atomic lattice sites. An inverse Fourier transform simulates the measured acoustic response in time domain. The method is numerically stable and computationally efficient. Moreover, the main advantage of this technique is the possibility of accounting for lateral inhomogeneities in the acoustic potentials, thereby allowing the treatment of interface roughness between layers.  相似文献   

6.
The use of short lengths of large core phosphate glass fibre, doped with high concentrations of Er or Er:Yb represents an attractive route to achieving high power erbium doped fibre amplifiers (EDFAs) and lasers (EDFLs). With the aim of investigating the potential of achieving diffraction limited output from such large core fibres, we present experimental results of fundamental mode propagation through a 20 cm length of passive 300 μm core multimode fibre when the input is a well-aligned Gaussian beam. Through careful control of fibre geometry, input beam parameters and alignment, we measured an output M2 of 1.1 ± 0.05. The fibre had a numerical aperture of 0.389, implying a V number of 236.8. To our knowledge, this is the largest core fibre through which diffraction limited fundamental mode propagation has been demonstrated. Although the results presented here relate to undoped fibre, they do provide the practical basis for a new generation of EDFAs and EDFLs.  相似文献   

7.
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.  相似文献   

8.
The elastic anisotropy of nematic elastomers   总被引:2,自引:0,他引:2  
We examine the robustness of order in nematic elastomers under mechanical strains imposed along and perpendicularly to the director when director rotation is prohibited. In contrast to electric and magnetic fields applied to conventional nematics, mechanical fields are shown theoretically and experimentally to greatly affect the degree of nematic order and related quantities. Unlike in liquid nematics, one can impose fields perpendicular to the director, thereby inducing biaxial order which should be susceptible to experimental detection. Nematic elastomers with unchanging director and degree of order should theoretically have the same elastic moduli for longitudinal and transverse extensions. This is violated when nematic order is permitted to relax in response to strains. Near the transition we predict the longitudinal modulus to be smaller than the transverse modulus; at lower temperatures the converse is true, with a crossover a few degrees below the transition. The differences are ascribed to the different temperature dependence of the stiffness of uniaxial and biaxial order. We synthesised side chain single-crystal nematic polymer networks, performed DSC, X-ray, birefringence, and thermo-mechanical characterisations, and then obtained linear moduli from stress-strain measurements. Received 29 September 2000  相似文献   

9.
Following a theoretical proposal [M. Farhat et al., Phys. Rev. Lett. 103, 024301 (2009)], we design, fabricate, and characterize a cloaking structure for elastic waves in 1?mm thin structured polymer plates. The cloak consists of 20 concentric rings of 16 different metamaterials, each being a tailored composite of polyvinyl chloride and polydimethylsiloxane. By using stroboscopic imaging with a camera from the direction normal to the plate, we record movies of the elastic waves for monochromatic plane-wave excitation. We observe good cloaking behavior for carrier frequencies in the range from 200 to 400?Hz (one octave), in good agreement with a complete continuum-mechanics numerical treatment. This system is thus ideally suited for demonstration experiments conveying the ideas of transformation optics.  相似文献   

10.
11.
12.
Na-Na Su 《中国物理 B》2023,32(1):14301-014301
To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness, whereas the phase velocity is independent of the static permeability. There is an apparent "mode switching" between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves. This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.  相似文献   

13.
Wave propagation in non-homogeneous magneto-electro-elastic plates   总被引:1,自引:0,他引:1  
A dynamic solution is presented for the propagation of harmonic waves in imhomogeneous (functionally graded) magneto-electro-elastic plates composed of piezoelectric BaTiO3 and magnetostrictive CoFe2O4. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The Legendre orthogonal polynomial series expansion approach is employed to determine the wave propagating characteristics in the plates. The dispersion curves of the imhomogeneous piezoelectric–piezomagnetic plate and the corresponding non-piezoelectric, non-piezomagnetic plates are calculated to show the influences of the piezoelectricity and piezomagnetism on the dispersion curves. They are compared with the dispersion curves of the plates with the different magnetic constants to illustrate the influential factors of the piezoelectric and piezomagnetic effect for the wave propagation in a magneto-electro-elastic plate. Electric potential and magnetic potential distributions at different wavenumbers are also obtained to illustrate the different influences of the piezoelectricity and piezomagnetism.  相似文献   

14.
Based on the three-dimensional linear elastic equations and magnetoelectroelastic constitutive relations, propagation of symmetric and antisymmetric Lamb waves in an infinite magnetoelectroelastic plate is investigated. The coupled differential equations of motion are solved, and the phase velocity equations of symmetric and antisymmetric modes are obtained for both electrically and magnetically open and shorted cases. The dispersive characteristic of wave propogation is explored. The mechanical, electric and magnetic responses of the lowest symmetric and antisymmetric Lamb wave modes are discussed in detailed. Obtained results are valuable for the analysis and design of broadband magnetoelectric transducer using composite materials.  相似文献   

15.
The propagation of finite-amplitude waves in a homogeneous, isotropic, stress-free elastic plate is investigated theoretically. Geometric and weak material non-linearities are included, and perturbation is used to obtain solutions of the non-linear equations of motion for harmonic generation in the waveguide. Solutions for the second-harmonic, sum, and difference-frequency components are obtained via modal decomposition. Ordinary differential equations for the modal amplitudes in the expansion of the second-order solution are obtained using a reciprocity relation. There are no restrictions on the modes or frequencies of the primary waves. Two conditions for internal resonance are quantified: phase matching, and transfer of power from the primary to the secondary wave.  相似文献   

16.
17.
Conditions of the existence of long-lived acoustic resonances that occur in a layered medium because of its oscillation with low damping factors are considered. A priori theoretical estimates relating the distribution of resonance frequencies in the complex plane to the parameters of inhomogeneity of the layered system are obtained. A scheme of resonance calculations in numerical modeling is described. Examples of geophysical media with long-lived resonances are presented.  相似文献   

18.
The large amplitude transverse vibration characteristics of a simply-supported isotropic equilateral triangular plate on elastic foundation have been investigated by following Berger's well-known approximate method in conjunction with a special type of co-ordinates known as tri-linear co-ordinates. A second order non-linear differential equation for the unknown time function has been obtained and solved, as usual, in terms of Jacobian elliptic functions. Results obtained from numerical calculations are presented graphically.  相似文献   

19.
We investigate, for the first time to our knowledge, the discrete propagation of near-infrared light in a voltage-controlled array of channel waveguides in undoped nematic liquid crystals under planar anchoring conditions. This novel geometry enables us to drive the system from one-dimensional bulk diffraction to discrete propagation and, for larger excitations, to discrete spatial solitons, or nematicons. The observed phenomena are adequately described by a scalar model that encompasses the voltage-dependent reorientational response of the material.  相似文献   

20.
We analyze the effect of mass layer stiffness on thickness-twist waves propagating in a rotated Y-cut quartz crystal plate with thin mass layers on its surfaces. An equation that determines the dispersion relation of the waves is given and is solved numerically. Quantitative results of the effect of the mass layer stiffness on wave frequencies are presented. These results are important to the understanding and design of resonators and mass sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号