首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification and monitoring of gaseous species released during thermal decomposition of the title compound 1, Zn(tu)2Cl2, (tu=thiourea, (NH2)2C=S) have been carried out in flowing air atmosphere up to 800°C by both online coupled TG-EGA-FTIR and simultaneous TG/DTA-EGA-MS. The first gaseous products of 1, between 200 and 240°C, are carbon disulfide (CS2) and ammonia (NH3). At 240°C, an exothermic oxidation of CS2 vapors occurs resulting in a sudden release of sulphur dioxide (SO2) and carbonyl sulphide (COS). An intense evolution of hydrogen cyanide (HCN) and beginning of the evolution of cyanamide (H2NCN) and isothiocyanic acid (HNCS) are also observed just above 240°C. Probably because of condensation and/or polymerization of cyanamide vapors on the windows and mirrors of the FTIR gas cell optics, some strange baseline shape changes are also occurring above 330°C. Above 500°C the oxidation process of organic residues appears to accelerate which is indicated by the increasing concentration of CO2, while above 600°C zinc sulfide starts to oxidize resulting in the evolution of SO2. All species identified by FTIR gas cell were also confirmed by mass spectrometry, except for HNCS. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Mixed valence (thiosemicarbazone)2CuII-CuI complexes were prepared and their e.p.r. spectra in the polycrystalline state studied. Complexes derived from acetophenone- and propiophenonethiosemicarbazones exhibit strong copper(II)-copper(II) and copper(II)-copper(I) interactions, whereas those derived from benzyl methyl ketone and cyclohexanone show strong copper(II)-copper(I) interaction but almost no copper(II)-copper(II) interaction.  相似文献   

3.
A new fluorescent ligand (phi(f) = 0.8 in dioxane), 2-(4'-aminophthalimidomethyl)pyridine (L), has been synthesized. A one-pot synthesis of its copper(I) complex upon reduction of copper(II) is achieved at room temperature. This complex, which has been characterized by X-ray crystallography, shows a linear N-Cu-N geometry with Cu-N bond lengths of 1.89 A. X-ray structure reveals weak Cu...O interactions between copper and one of the imide oxygen atoms of the ligand framework. Additional weak Cu...O interactions between copper and oxygen atoms of the ClO(4)(-) counteranion are detected that lead to a zigzag polymeric chain with alternate ClO(4)(-) and copper ions. A 2-D intermolecular hydrogen bonding network is also observed. This complex is found to be highly inert toward oxidation both in the solid state and in solution.  相似文献   

4.
Complexes [Cu(NPh(2))(2)](-), [Cu(NPh(2))I](-) and K[Cu(phen)(NPh(2)) (p-tolyl)](+) were observed by in situ electrospray ionization mass spectrometry (ESI-MS) analysis of the copper(I)-catalyzed C-N coupling reaction under the catalytic reaction condition indicating that they are intermediates in the reaction. A catalytic cycle composed of a free radical path and a 2e oxidative addition path is proposed based on these observations.  相似文献   

5.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

6.
Cellulosic biomass is a promising alternative energy resource from the viewpoint of sustainability. The use of waste materials as cellulosic biomass could additionally contribute to a recycling society. It is thus essential to develop safer processes in order to expand utilization of cellulosic biomass as a useful resource in the future. For example, in some cases, construction wastes contain wood preservatives, including metal oxides that can act as catalysts for the oxidation of organic materials. Copper(II) oxide (CuO) is a major component in wood preservatives and is known to catalyze the oxidation of cellulose. There is, therefore, possibility for spontaneous ignition within large piles of wood chips from construction wastes. In this study, we focused on the thermal behavior of a cellulose/CuO mixture, measured using a Calvet-type heat flux calorimeter. In addition, Fourier transform infrared spectroscopy and gas chromatography were applied to analyze the oxidative decomposition gases of the cellulose/CuO mixture, and a reaction mechanism was proposed. It was revealed that CuO promotes the oxidative decomposition of cellulose and increases the quantity of the gases that evolved from cellulose with a catalytic cycle. The influence of CuO on oxidation of cellulose is greater at lower temperatures and spontaneous ignition, fires, and explosions are likely to increase when wood chips containing CuO are stored for long periods of time.  相似文献   

7.
A new chelidamate complex, [Cu(chel)(H2O)2(mpd)] (chel = chelidamate; mpd = 4-methylpyrimidine), has been synthesized and characterized through a combination of single crystal X-ray analysis, electron paramagnetic resonance (EPR), ultraviolet-visible (UV-vis), and fourier transform infrared spectroscopy (FT-IR). The complex has six-coordinate distorted octahedral geometry around Cu(II). The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using Density Functional Theory (DFT)/B3LYP and Hartree Fock quantum chemical methods with 6-31G(d, p) basis set by Gaussian 09W software. The EPR spectrum of the compound showed that the paramagnetic center has rhombic symmetry. The EPR studies were carried out using the following unrestricted hybrid density functionals: B3LYP, CAM-B3LYP, HSEH1PBE, WB97XD, MPW1PW91, and BPV86. The UV–vis absorption spectra have been examined in different media and compared with the calculated one using TD-DFT method by applying the polarizable continuum model. Natural bond orbital property of complex has been performed by DFT/B3LYP with 6-31G (d, p) basis set.  相似文献   

8.
9.
10.
A mononuclear copper(II)-hydroperoxo species has been generated by the reaction of Cu(I)-H2BPPA complex with dioxygen, which illustrates the enzymatic reaction process of the CuB site in the DbetaM and PHM.  相似文献   

11.
The extraction and separation of copper(II), zinc(II), cobalt(II), and cadmium(II) were investigated. Both copper(II) and zinc(II) formed ammine-complexes, while cadmium(II) and cobalt(II) formed hydroxide precipitates in an ammonia medium. By the addition of sodium dodecylsulfate (SDS), a copper(II) complex formed an ion-pair (copper-ammine-DS), which was extracted into the SDS phase. However, a zinc(II) complex did not form an ion-pair, and was soluble in water. Copper(II) ion was recovered by stripping (back-extraction) after the addition of hydrochloric acid. This method was applied to the separation of copper(II) in a brass alloy.  相似文献   

12.
13.
Conclusions An x-ray diffraction method was used to study polycrystalline samples and monocrystals of cupric hexafluoroacetylacetonato-benzoylacetonate. The molecular packing may be described as dimers arranged along the b-axis. The Cu-Cu distance in the dimer is 3.2 Å and the distance between the dimers is 5.8 Å.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1405–1406, June, 1989.  相似文献   

14.
Literature data for gold dissolution in ammoniacal copper(II) thiosulfate solutions is reinterpreted on the basis of adsorption and mixed potential theory. The dissolution reaction appears to take place via the adsorption of copper(II)-ammonia-thiosulfate onto the gold surface, forming the adsorbed species perpendicular to Au(S2O3)nCu(NH3)-(2n-2)p. Equilibrium constants for the formation of these species from Cu(NH3)(2+)m are in the range Kads=172-510 (molar units) for m=4, n=1 or 2, and p=2 or 3. These complexes decompose with a rate constant of kAu=1.7 x 10(-4)molm(-2)s(-1), to produce Au(S2O3)(3-)2 and Cu(NH3)+(3) or Cu(NH3)+(2), where the copper(I) complexes in solution are re-equilibrated to the more stable species Cu(S2O3)3-(2) and Cu(S2O2)5-(3).  相似文献   

15.
The reaction of a Cu(II)-nitrosyl complex (1) with hydrogen peroxide at -20 °C in acetonitrile results in the formation of the corresponding Cu(I)-peroxynitrite intermediate. The reduction of the Cu(II) center was monitored by UV-visible spectroscopic studies. Formation of the peroxynitrite intermediate has been confirmed by its characteristic phenol ring nitration reaction as well as isolation of corresponding Cu(I)-nitrate (2). On air oxidation, 2 resulted in the corresponding Cu(II)-nitrate (3). Thus, these results demonstrate a possible decomposition pathway for H(2)O(2) and NO through the formation of a peroxynitrite intermediate in biological systems.  相似文献   

16.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

17.
A flow-injection system with a carbon paste detector is proposed for the determination of copper in complex media at +0.050 V vs. Ag/AgCl. Both the reduction current peak of Cu(II) and the oxidation peak of Cu(I) (obtained in the presence of hydroxylamine in the reagent stream) were proportional to the Cu(II) concentration in the original sample. The stabilization of Cu(I) in the hydroxylamine system provides a novel approach; the inherent repeatability of operation of flow-injection systems (timing, etc.) proved ideal for this utilization. Acidified Cu(II) samples containing additional metal ions [Fe(lI), Zn(II), Pb(II)] and relatively high concentrations of serum albumin were analysed. A chelating column retained heavy metal ions while allowing albumin to run to waste. The retained metals were subsequently eluted with nitric acid into a stream of sodium acetate or sodium acetate-hydroxyl- amine. Before reaching the detector, the pH of the sample plug was adjusted. With the hydroxylamine system, Fe(III) interference was minimized and the sensitivity and reproducibility were improved. The sample throughput was 25 h?1. National Bureau of Standards Standard Reference Material 909 Human Serum was used to test the method.  相似文献   

18.
A dinuclear copper(II) compound, [Cu(btssb)(H2O)]2 · 4(H2O) (1), and a 1-D chain copper(II) compound, [Cu(ctssb)(H2O)] n (2) [where H2btssb is 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid and H2ctssb is 2-[(3,5-dichloro-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid], were prepared and characterized. Compound 1 crystallizes in the monoclinic space group P21/c, with a = 10.109(2) Å, b = 20.473(4) Å, c = 6.803(1) Å, β = 100.32(3)°, V = 1385.1(5) Å3, and Z = 2; R 1 for 1796 observed reflections [I > 2σ(I)] was 0.0357. The geometry around each copper(II) can be described as slightly distorted square pyramidal. The CuII ··· CuII distance is 5.471(1) Å. Compound 1 formed a 1-D network through O–H ··· O hydrogen bonds and 1-D water chains exist. The 1-D chain complex 2 crystallizes in the triclinic space group P 1, with a = 5.030(2) Å, b = 7.725(2) Å, c = 17.011(5) Å, α = 92.706(4)°, β = 97.131(4)°, γ = 102.452(3)°, V = 638.6(3) Å3, and Z = 2; R 1 for 1897 observed reflections [I > 2σ(I)] was 0.0171. In 2, Cu(II) was also a slightly distorted square pyramid formed by two oxygens and one nitrogen from ctssb, one oxygen from another ctssb, and one water molecule. The complex formed a 1-D chain through O–S–O bridge of ctssb ligand. The 1-D chain further constructed a double chain through O?H ··· O hydrogen bonds.  相似文献   

19.
It has been demonstrated that phenylcopper(I)-containing clusters are generated in the gas phase from bis(dibenzoylmethane) copper(II) (Cu(dbm)2) by laser desorption/ ionization (LDI) method. For example, the [Cu5dbm2(C6H5)2]+ ion can be considered as consisting of two Cudbm molecules, two CuC6H5 molecules and a Cu+ cation. The [Cu5(C6H5)4]+ ion can be considered as phenylcopper(I) cluster (consisting of four phenylcopper molecules) ionized by additional Cu+ cation. Results from MS/MS (tandem mass spectrometry) experiments have confirmed the presence of phenylcopper molecules in the analyzed clusters. Ease of preparation of dibenzoylmethane-metal complexes and straightforward method to obtain LDI mass spectra offer a wide range of possibilities to study similar organometallic clusters in the gas phase.   相似文献   

20.
The combined thermal analysis techniques of thermogravimetry, evolved gas analysis and mass spectrometry were used to investigate the thermal decomposition of several selected mercury(I), (II) compounds. Although TG curves are presented, the analysis of the evolved gases formed during the thermal decomposition processes was of greater interest. Gaseous products detected included: HgSO4SO, SO2 and O2; Hg(SCN)2CS2, (CN)2 and N2; Hg(NO3)2NO, N2O, NO2 and O2; HgNO3 H2ONO, NO2 and N2O; and Hg(C2H3O2)2—organic fragments. The evolved gas analysis was complicated by sublimation of the compounds at low pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号