首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two peptides (MW 1211.7 and 928.5 Da) were detected by RP–HPLC–ESI–MS analysis of parotid saliva secreted upon continuous parasympathetic stimulation. The peptide with the higher mass (PSPFr‐A) corresponded to the N‐terminal dodecapeptide (Fragment 1–12) of rat parotid secretory protein (PSP), while the peptide with the lower mass (PSPFr‐B) corresponded to the 4–12 fragment of the same protein. During stimulation, the PSPFr‐A secretion increased, while the PSPFr‐B secretion decreased (HPLC–ESI–MS). In the presence of cycloheximide, PSPFr‐A was not demonstrated, while the PSPFr‐B secretion decreased. In the presence of aprotinin, the PSPFr‐B secretion was almost abolished, while the PSPFr‐A secretion increased to higher levels than those observed in the absence of the inhibitor. In vitro perfusion, with artificial solution, of stimulated rat parotid glands excluded that the fragments were derived from the circulation. Neither peptide occurred in enriched granule preparations from unstimulated glands. The results suggest that at least two pathways – granular and vesicular – are responsible for the generation of the two peptides. PSPFr‐A is the first cleavage product in both pathways. PRPFr‐B is probably generated from granular PSPFr‐A only and, at the end of the granule mediated pathway, by the action of an enzyme of the serine protease class.  相似文献   

2.
Screening populations of individual cells for secretory heterogeneity   总被引:1,自引:0,他引:1  
Many common metabolic and neurological disorders are related to defective regulation of exocytosis at the level of single cells. In exocytosis, vesicles containing the secretory product of a given cell type fuse with the plasma membrane allowing release of the vesicular contents into the extracellular environment where the physiological action can be exerted. The typical secretory vesicle contains between 0.15 and 10 attomoles of material that is released on a millisecond timescale. Hence, detection of this process presents several chemical and analytical challenges. In this work, we utilize the native ATP, stored at high concentrations within the secretory vesicles of most neuroendocrine cells and co-released during exocytosis and during cell lysis, as a universal tracer of cellular secretion events. Organisms studied include pancreatic islets, mast cells, and Escherischia coli. Cellular processes investigated include exocytotic release, stimulated cell lysis, and programmed cell lysis.  相似文献   

3.
We have shown that weak oscillating electromagnetic fields in the pericellular environment modulate key steps in coupling of signals from humoral stimuli at cell surface receptors to intracellular systems. This paper summarizes evidence that enzymatic activity within the cell provides sensitive molecular markers about both the sequence and the energetics of transmembrane coupling mechanisms. As research tools, these imposed fields appear to offer unique opportunities for understanding highly non-linear, non-equilibrium aspects of these coupling mechanisms, including the basis for amplification of weak pericellular stimuli to achieve an energetic threshold in signaling to intracellular enzyme systems.A three-stage model of membrane transductive coupling is proposed: a first stage in which weak pericellular electrochemical oscillations and binding of humoral stimulating molecules at receptor sites initiates a highly cooperative modification of calcium binding, a second stage involving transmission of signals initiated at receptor sites to the cell interior; and a third stage dealing with intracellular response to the transmembrane signal.Low frequency pulsed magnetic fields modulate stimulation of adenylate cyclase by parathyroid hormone (PTH) in bone cells. From collateral studies of field effects on PTH-binding to its receptor and from studies of fluoride activation of adenylate cyclase, there is evidence that an important field action is on membrane coupling proteins between receptors for PTH and adenylate cyclase.In addition to an action on adenylate cyclase, weak pericellular fields modulate activity of messenger enzymes, the protein kinases, and of an enzyme essential for cell growth, omithine decarboxylase. In human lymphocytes, cAMP-independent protein kinases are transiently inhibited by exposure to weak (athermal) microwave fields sinusoidally modulated at 16 Hz. In liver and ovary cells exposed to the same fields, and in bone cells exposed to low frequency pulsed magnetic fields, omithine decarboxylase activity is increased.Experimental data and models interrelating the pericellular electrochemical environment, cancer-promoting phorbol esters and activities of protein kinases and ornithine decarboxylase are discussed.  相似文献   

4.
Studies on the reaction kinetics and chromatographic properties of detergent-dispersed adenylate cyclase are described. Detergent-dispersed enzyme was prepared from whole rat cerebellum and from partially purified plasma membranes from rat liver. Data were simulated to fit kinetic models for which an inhibitor is added in constant proportion to the variable substrate. Models were chosen to distinguish whether the adenylate cyclase reaction may be controlled by an inhibitory action of free ATP--4 (or HATP--3) or by a stimulatory action of free divalent cations. The various kinetic models were then tested with the dispersed brain adenylate cyclase with both Mg++ and Mn++ and in two different buffer systems. The experimental data indicate that this enzyme has a distinct cation binding site, but exhibits no significant inhibition by HATP--3 or ATP--4. The detergent-dispersed adenylate cyclase both from liver plasma membranes and from brain have been chromatographed on anion exchange material and have been subjected to gel filtration. The presence of detergent was required for elution of cyclase activity from DEAE-Sephadex but was not required when DEAE-agarose was used. Dispersed brain cyclase was also chromatographed on agarose-NH(CH2)3NH(CH2)3-NH2 which exhibits both ionic and hydrophobic properties. Fifty percent of the applied activity was recovered with a fivefold increase in specific activity. The data suggest that the relative effectiveness of a given chromatographic procedure for detergent-dispersed adenylate cyclase may reflect the influence of both hydrophobic and ionic factors.  相似文献   

5.
We have used free flow electrophoresis (FFE) technology to study the electrophoretic behavior of growth hormone (GH) molecules, GH secretory granules and GH cell subpopulations contained in pituitary glands of humans and rodents. GH activities in different electrophoresis fractions were measured by immunoassay or bioassay, viz., measurement of chondrocyte proliferation in the tibial growth plate of the hypophysectomized rat. Using FFE we discovered a peptide in human post mortem pituitary tissue and cryopoor human plasma that is active in the tibial line bioassay, is inactive in a GH immunoassay, and is neither GH nor a GH fragment. This peptide, called tibial peptide, has high anodal mobility and is readily separable from GH by FFE. Its molecular mass is approximately 5 kD. It is particularly rich in glycine. A partial amino acid sequence (residues 9-25) in the middle region of the peptide shows that 9 of the 16 residues are nonpolar. On the basis of results from other FFE experiments, using either GH-containing secretory granules or GH-producing cells, we believe that the peptide is stored within the secretion granule of a subpopulation of GH cells. On the basis of recent information elucidating the role of C peptide contained in the insulin storage granule of the pancreatic cell, we propose that the tibial peptide serves a similar role in the GH cell. Thus, not only may tibial peptide aid in proper alignment of disulfide bonds between GH monomers in the secretory granule, but, like the C peptide, it also appears to have biologic activity in its own right.  相似文献   

6.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

7.
The effect of pentobarbital on the adenylate cyclase system was examined in synaptosomal membranes from rat brain. Pentobarbital inhibited forskolin-stimulated enzyme activity more effectively than the basal and Mn2(+)-stimulated enzyme activities. The degree of inhibition of the enzyme activity by pentobarbital was increased by the presence of forskolin in a concentration-dependent manner. No significant difference is observed in the degree of the inhibition by pentobarbital between the basal and forskolin-stimulated activities in the membranes prepared from the peripheral tissues.  相似文献   

8.
Basic proline-rich proteins (bPRPs) are a class of proteins widely present in saliva of humans and other mammals. They are synthesized as preproproteins and enzymatically cleaved into small peptides before secretion from the salivary glands. Recently, we characterized two proline-rich peptides (SP-A and SP-B) in parotid secretory granules of pig (Sus Scrofa) that are derived from three isoforms of a PRP proprotein (Swiss-Prot data bank: Q95JC9-1, Q95JC9-2 and Q95JC9-3). Together the coding regions for SP-A and SP-B, which are repeated many times, account for 52-70% of the coding regions of the PRP proproteins. This study was undertaken to identify peptides encoded by unassigned regions of the PRP proproteins. RP-HPLC-ESI-IT-MS analysis of enriched granule preparations from pig parotid glands by two different analytical strategies identified ten new proline-rich peptides derived from the three proproteins. Together with the coding regions for SP-A and SP-B already identified it was possible to assign 68-75% of the proproteins coding regions. The peptide sequences indicated a number of unusual proteolytic cleavage sites suggesting the presence of unknown proprotein convertases.  相似文献   

9.
Liver plasma membranes (LPM) were isolated from rats fed an essential fatty acid-supplemented diet (+EFA) or from rats fed an essential fatty acid-deficient diet (-EFA). The proportions of linoleate and arachidonate in membrane total fatty acids in the -EFA preparations were one-half or less than the values for the +EFA preparations. Basal, F-, or glucagon-stimulated adenylate cyclase activities were significantly lower in EFA-deficient livers than in nondeficient ones. Addition of GTP significantly enhanced glucagon-stimulated adrenylate cyclase in both groups, but extent of stimulation above basal was greater in EFA-deficient livers. Portal vein injection of glucagon in vivo resulted in significantly higher cAMP formation in +EFA livers than in -EFA livers. When glucagon was used in vitro at 1-1,000 nM, stimulation of adenylate cyclase remained lower in EFA-deficient membranes, but extent of stimulation above basal activity was larger in -EFA membranes than in +EFA. Total Na+, K+ (Mg2+)-ATPase from EFA-depleted LPM exhibited significantly higher values of apparent Km and Vmax-5'-Nucleotidase activity, in contrast, was considerably decreased in EFA-deficient rats. These findings show that, in animals, changes in unsaturated fatty acid composition can affect the properties of membrane-bound enzymes. These alterations could be due to changes in membrane physical properties and/or prostaglandin formation.  相似文献   

10.
Rats fed a diet deficient in vitamin D were found to exhibit a refractory cyclic AMP response of kidney slices to parathyroid hormone and a marked decrease in membrane parathyroid hormone-dependent adenylate cyclase activity. Both the characteristic calcium deficiency (hypocalcemia) and secondary elevation of circulating parathyroid hormone appeared before the first noticeable decrease in hormone-dependent enzyme activity. After repletion of D-deficient rats with vitamin D2, we found that serum calcium and parathyroid hormone were both restored to normal levels before the depressed enzyme response to the hormone was reversed. Moreover, infusion of parthyroid hormone into vitamin D-replete rats led to a marked reduction in parathyroid hormone-dependent adenylate cyclase activity, which was partly restored to control level 3 hours after discontinuing the hormone infusion. Taken as a whole, this study suggests that the elevated endogenous parathyroid hormone in the vitamin D-deficient rat is involved in the "down-regulation" of renal cyclic AMP responsiveness to the hormone. However, these experiments do not rule out the possibility that calcium deficiency and/or vitamin D per se participate in the regulation of the renal cyclic AMP response to parathyroid hormone.  相似文献   

11.
The size distribution of adenylate cyclase from the rat renal medulla solubilized with the nonionic detergents Triton X-100 and Lubrol PX was determined by gel filtration and by centrifugation in sucrose density gradients made up in H2O or D2O. The physical parameters of the predominant form in Triton X-100 are s20,w, 5.9S; Strokes radius, 62 A; partial specific volume (v), 0.74 ml/g; mass, 159,000 daltons; f/f0, 1.6; axial ratio (prolate ellipsoid), 11. For the minor form the values are: s20w, 3.0; Stokes radius, 28 A; mass, 38,000 daltons; f/f0, 1.2. The corresponding values determined in Lubrol PX are similar. The value for V for the enzyme indicates that it binds less than 0.2 mg detergent/mg protein. Since interactions with detergents probably substitute for interactions with lipids and hydrophobic amino acid side chains, these findings suggest that no more than 5% of the surface of adenylate cyclase is involved in hydrophobic interactions with other membrane components. Thus, most of the mass of the enzyme is not deeply embedded in the lipid bilayer of the plasma membrane. Similar studies have been performed on the soluble guanylate cyclase of the rat renal medulla. In the absence of detergent, the molecular properties of this enzyme are: s20w, 6.3S; Stokes radius, 54 A, V, 0.75 ml/g; mass, 154,000 daltons f/f0, 1.4; Axial ratio, 7. The addition of 0.1% Lubrol PX to this soluble enzyme increases it activity two- to fourfold and changes the physical properties to: s20,w, 5.5S; Stokes radius, 62 A; V, 0.74 ml/g; mass, 148,000 daltons, f/f0, 1.6; axial ratio, 11. These results show that Lubrol PX activates the enzyme by causing a conformational change with unfolding on the polypeptide chain. Guanylate cyclase from the particulate cell fraction can be solubilized with Lubrol PX but has properties quite different from those of the enzyme in the soluble cell fraction. It is a heterogeneous aggregate with s20,w, 10S; Stokes radius, 65 A; mass about 300,000 daltons. The conditions which solubilize guanylate cyclase also solubilize adenylate cyclase and the two activities can be separated on the same sucrose gradient.  相似文献   

12.
The HLB dependency for the solubilization of membrane proteins and adenylate cyclase activity from a plasma membrane-enriched fraction from rat liver has been determined. The HLB (hydrophilic/lipophilic/balance) number of a detergent is an empirical measure of its relative hydrophobicity. Detergent HLB numbers vary systematically with the length of the ethylene oxide chain for a homologous series of detergents such as the Triton X series. These detergents have a constant hydrophobic moiety, octylphenyl, and a variable polar portion, polyethoxyethanol. Basal-NaF-epinephrine-, and glucagon-stimulated adenylate cyclase activities were solubilized in the HLB range of 16.8-17.4. Solubilization was most effective in 0.01 M Tris buffers at pH 7.5 containing 1-5 mM mercaptoethanol, 1 mM MgCl2, and 0.1% Triton X-305. The detergent to membrane protein ratio used in these studies was 3:1. Criteria for solubilization included lack of sedimentation at 100,000 X g, the absence of particulate material in the supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cyclase activity in Sephadex G-200 gels. The apparent molecular weight of the solubilized enzyme was approximately 200,000 in the presence of Triton X-305. The solubilized enzyme was stimulated 5-fold by NaF, 7-fold by glucagon, and 20-fold by epinephrine compared to the particulate enzyme used in this study which was stimulated 10-fold, 3.4-fold, and 4-fold by NaF, epinephrine, and glucagon, respectively. The solubilized enzyme is stable for several weeks when stored at -60 degrees C.  相似文献   

13.
Secretory vesicles isolated from a variety of mammalian tissues are known to lyse and thereby release their secretory products when exposed to ATP. This process, which will be termed ATP-induced lysis, has been studied most extensively using adrenal chromaffin-granule preparations. We report here that ATP causes the lysis of a highly purified preparation of rat parotid secretory granules. The rate of granule lysis was measured spectrophotometrically, and ATP-induced lysis was expressed as the increase in the rate of lysis (r = % lysis per min) when ATP was added. This lytic process was characterized with respect to pH, temperature, osmolarity, and the ionic composition of the media. ATP-induced lysis of parotid granules was found to have the following properties in common with the extensively characterized chromaffin-granule process: 1. It is a saturable function of ATP with half-maximal rates observed at 0.5 +/- 0.1 mM ATP. 2. It is temperature dependent, eg, r = 6.1 +/- 2.1%/min at 30 degrees C vs 12.2 +/- 2.5%/min at 37 degrees C. 3. It is inhibited in hyperosmotic media, eg, r = 5.3 +/- 0.3%/min at 0.3 OsM vs 0.8 +/- 0.2%/min at 0.4 OsM. 4. It shows a nucleotide preference of ATP = GTP greater than ADP greater than AMP greater than CTP = ITP. 5. It has an anion requirement. The above findings, combined with reports of ATP-induced lysis of cholinergic, insulin, and posterior-pituitary vesicles, imply that ATP-induced lysis may reflect an ATP-dependent property of all secretory vesicles, and as such, this vesicle property could play a similar role in each exocytotic release process. Using a model system, Miller and Racker [22] made a surprising finding that the extent of which liposomes fuse with a black lipid membrane depends on the osmotic gradient across the vesicle membrane. In view of the osmotic dependence of ATP-induced lysis in this and other secretory-vesicle preparations, we postulate that ATP may prime secretory vesicles for fusion with the plasma membrane by inducing and/or maintaining an osmotic gradient across the vesicle membrane.  相似文献   

14.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

15.
Transformation of adenylates (AMP, ADP and ATP) by washed chromatophore membranes of Rhodobactor spheroides G1C in the dark and in the light indicated the functions of ATPase (ADP + Pi in equilibrium ATP) and of an adenylate kinase (2ADP in equilibrium AMP + ATP). The activity of adenylate kinase of the chromatophores was not inhibited by AP5A, and persisted even after sonication in the presence of EDTA or CaCl2; the results suggested the presence of an adenylate kinase bound to the chromatophore membrane. In search of the enzyme, the supernatant after sonication of the chromatophores in the presence of EDTA was subjected to a molecular sieve and then to ion-exchange HPLC; a fraction with high specific adenylate kinase activity, containing a very sharp peak at 55 kDa, was isolated. Preliminary characterization indicated that it is different from the well-documented water-soluble 33 kDa adenylate kinase.  相似文献   

16.
The syntheses of adrenocorticotropin-(5–24)-eicosapeptide, -(6–24)-nonadecapeptide, -(7–24)-octadecapeptide, and -(8–24)-heptadecapeptide are described. Their biological activities on isolated adrenal cortex cells and adipocytes, on superfused adrenal tissue, as well as on the adenylate cyclase system of isolated cell membranes are summarized.  相似文献   

17.
Matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry is used to rapidly characterize the human neutrophil peptides – HNP 1, 2, and 3 – in saliva. The saliva excreted from the parotid and sublingual/submandibular glands of 70 individuals were collected and examined using MALDI‐TOF. The MALDI approach requires no sample pretreatment other than mixing the saliva‐absorbing material with the matrix and drying under ambient conditions. Tissue paper was the best material for collecting the saliva samples because of its strong texture and high absorbance, and sinapinic acid was the best MALDI matrix for the analysis of the HNPs. HNPs were detected in almost all the samples collected from the parotid glands, with no obvious differences among age or gender. In contrast, the distribution of the HNPs in the samples collected from the sublingual/submandibular glands was age‐dependent: no HNPs were detected for those collected from individuals younger than 30, but the HNPs were present in all of the samples collected from those older than 60 years. The increased probability of detecting saliva HNPs with age suggests that HNPs may function as a biomarker for aging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Adenylate kinase activity in rod outer segment membranes of bovine retina decreased of about 55% when exposed to an extremely low frequency electromagnetic field of 75 Hz and 250 microT. The effect was independent of the time of permanence in the field. Negligible effects of the field were found on the enzymatic activity of a soluble isoform of adenylate kinase or of rod outer segment membranes solubilized with Triton, suggesting the importance of the membrane in determining the conditions of the enzyme inactivation.  相似文献   

19.
Regulated exocytosis is a fundamental biological process used to deliver chemical messengers for cell-cell communication via membrane fusion and content secretion. A plethora of cell types employ this chemical-based communication to achieve crucial functions in many biological systems. Neurons in the brain and platelets in the circulatory system are representative examples utilizing exocytosis for neurotransmission and blood clotting. Single-cell studies of regulated exocytosis in the past several decades have greatly expanded our knowledge of this critical process, from vesicle/granule transport and docking at the early stages of exocytosis to membrane fusion and to eventual chemical messenger secretion. Herein, four main approaches that have been widely used to study single-cell exocytosis will be highlighted, including total internal reflection fluorescence microscopy, capillary electrophoresis, single-cell mass spectrometry, and microelectrochemistry. These techniques are arranged in the order following the route of a vesicle/granule destined for secretion. Within each section, the basic principles and experimental strategies are reviewed and representative examples are given revealing critical spatial, temporal, and chemical information of a secretory vesicle/granule at different stages of its lifetime. Lastly, an analytical chemist’s perspective on potential future developments in this exciting field is discussed.  相似文献   

20.
Adenylate cyclase from bovine brain cortex was reconstituted into asolectin liposomes with (500-fold) or without transmembrane Ca2+ gradient. The enzyme activity of four types of proteoliposomes (the active center of enzyme exposing outside) was compared. The highest adenylate cyclase activity was observed in the vesicles with outside lower Ca2+ concentration (approximately 10(-6) mol/L, similar to the physiological condition). If the transmembrane Ca2+ gradient was in the inverse direction (i.e. outside higher Ca2+ concentration, 0.5 mmol/L), a lowest enzymatic activity would appear. The difference in enzymatic activity between the two types of proteoliposomes could be diminished following the addition of Ca2+ ionophore A23187. Proteoliposomes without transmembrane Ca2+ gradient exhibited intermediate activities. The conformation difference of adenylate cyclases in the above-mentioned proteoliposomes was also detected by measuring intrinsic fluorescence and fluorescence quenching with KI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号