首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critics of the deterministic approach to efficiency measurement argue that no allowance is made for measurement error and other statistical noise. Without controlling for measurement error, the resulting measure of efficiency will be distorted due to the contamination of noise. The stochastic frontier models purportedly allow both inefficiency and measurement error. Some proponents argue that the stochastic frontier models should be used despite the limitations because of the superior conceptual treatment of noise. However, the ultimate value of the stochastic frontier depends on its ability to properly decompose noise and inefficiency. This paper tests the validity of the stochastic frontier cross-sectional models using a Monte Carlo analysis. The results suggest that the technique does not accurately decompose the total error into inefficiency and noise components. Further, the results suggest that at best, the stochastic frontier is only as good as the deterministic model.  相似文献   

2.
In this paper, we consider a nonlinear switched time-delay (NSTD) system with unknown switching times and unknown system parameters, where the output measurement is uncertain. This system is the underling dynamical system for the batch process of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumoniae. The uncertain output measurement is regarded as a stochastic vector (whose components are stochastic variables) and the only information about its distribution is the first-order moment. The objective of this paper is to identify the unknown quantities of the NSTD system. For this, a distributionally robust optimization problem (a bi-level optimization problem) governed by the NSTD system is proposed, where the relative error under the environment of uncertain output measurements is involved in the cost functional. The bi-level optimization problem is transformed into a single-level optimization problem with non-smooth term through the application of duality theory in probability space. By applying the smoothing technique, the non-smooth term is approximated by a smooth term and the convergence of the approximation is established. Then, the gradients of the cost functional with respect to switching times and system parameters are derived. A hybrid optimization algorithm is developed to solve the transformed problem. Finally, we verify the obtained switching times and system parameters, as well as the effectiveness of the proposed algorithm, by solving this distributionally robust optimization problem.  相似文献   

3.
This paper is concerned with the self-triggered filtering problem for a class of Markovian jumping nonlinear stochastic systems. The event-triggered mechanism (ETM) is employed between the sensor and the filter to reduce unnecessary measurement transmission. Governed by the ETM, the measurement is transmitted to the filter as long as a predefined condition is satisfied. The purpose of the addressed problem is to synthesize a filter such that the dynamics of the filtering error is bounded in probability (BIP). A sufficient condition is first given to ensure the boundedness in probability of the filtering error dynamics, and the characterization of the desired filter gains is then realized by means of the feasibility of certain matrix inequalities. Furthermore, a self-triggered mechanism is designed to guarantee the filtering error dynamics to be BSP with excluded Zeno phenomenon. In the end, numerical simulation is carried out to illustrate the usefulness of the proposed self-triggered filtering algorithm.  相似文献   

4.
Deterministic models of technical efficiency assume that all deviations from the production frontier are due to inefficiency. Critics argue that no allowance is made for measurement error and other statistical noise so that the resulting efficiency measure will be contaminated. The stochastic frontier model is an alternative that allows both inefficiency and measurement error. Advocates argue that the stochastic frontier models should be used despite other potential limitations because of the superior conceptual treatment of noise. As will be demonstrated in this paper, however, the assumed shape of the error distributions is used to identify a key production function parameter. Therefore, the stochastic frontier models, like the deterministic models, cannot produce absolute measures of efficiency. Moreover, we show that rankings for firm-specific inefficiency estimates produced by traditional stochastic frontier models do not change from the rankings of the composed errors. As a result, the performance of the deterministic models is qualitatively similar to that of the stochastic frontier models.  相似文献   

5.
We study algorithms for approximation of the mild solution of stochastic heat equations on the spatial domain ]0, 1[d. The error of an algorithm is defined in L2-sense. We derive lower bounds for the error of every algorithm that uses a total of N evaluations of one-dimensional components of the driving Wiener process W. For equations with additive noise we derive matching upper bounds and we construct asymptotically optimal algorithms. The error bounds depend on N and d, and on the decay of eigenvalues of the covariance of W in the case of nuclear noise. In the latter case the use of nonuniform time discretizations is crucial.  相似文献   

6.
We extend the basic convergence results for the Simulated Annealing (SA) algorithm to a stochastic optimization problem where the objective function is stochastic and can be evaluated only through Monte Carlo simulation (hence, disturbed with random error). This extension is important when either the objective function cannot be evaluated exactly or such an evaluation is computationally expensive. We present a modified SA algorithm and show that under suitable conditions on the random error, the modified SA algorithm converges in probability to a global optimizer. Computational results and comparisons with other approaches are given to demonstrate the performance of the proposed modified SA algorithm.  相似文献   

7.
Stochastic reaction systems with discrete particle numbers are usually described by a continuous-time Markov process. Realizations of this process can be generated with the stochastic simulation algorithm, but simulating highly reactive systems is computationally costly because the computational work scales with the number of reaction events. We present a new approach which avoids this drawback and increases the efficiency considerably at the cost of a small approximation error. The approach is based on the fact that the time-dependent probability distribution associated to the Markov process is explicitly known for monomolecular, autocatalytic and certain catalytic reaction channels. More complicated reaction systems can often be decomposed into several parts some of which can be treated analytically. These subsystems are propagated in an alternating fashion similar to a splitting method for ordinary differential equations. We illustrate this approach by numerical examples and prove an error bound for the splitting error.  相似文献   

8.
Andreas Rßler 《PAMM》2004,4(1):19-22
Numerical methods with fixed step size have limitations if they are applied for example to stiff stochastic differential equations where the step size is forced to be very small. In this paper, an adaptive step size control algorithm for the weak approximation of stochastic differential equations is introduced. The proposed algorithm calculates an estimation of the local error in order to determine the optimal step size such that the local error is bounded by some given tolerances. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The efficient and accurate calculation of sensitivities of the price of financial derivatives with respect to perturbations of the parameters in the underlying model, the so-called ‘Greeks’, remains a great practical challenge in the derivative industry. This is true regardless of whether methods for partial differential equations or stochastic differential equations (Monte Carlo techniques) are being used. The computation of the ‘Greeks’ is essential to risk management and to the hedging of financial derivatives and typically requires substantially more computing time as compared to simply pricing the derivatives. Any numerical algorithm (Monte Carlo algorithm) for stochastic differential equations produces a time-discretization error and a statistical error in the process of pricing financial derivatives and calculating the associated ‘Greeks’. In this article we show how a posteriori error estimates and adaptive methods for stochastic differential equations can be used to control both these errors in the context of pricing and hedging of financial derivatives. In particular, we derive expansions, with leading order terms which are computable in a posteriori form, of the time-discretization errors for the price and the associated ‘Greeks’. These expansions allow the user to simultaneously first control the time-discretization errors in an adaptive fashion, when calculating the price, sensitivities and hedging parameters with respect to a large number of parameters, and then subsequently to ensure that the total errors are, with prescribed probability, within tolerance.  相似文献   

10.
考虑多维扩散过程的非参数估计问题.利用It扩散的性质,将漂移向量和扩散矩阵的样本表示成带有测量误差的回归模型,并讨论了系统误差的L~r上界以及随机误差项的收敛速度,建立了漂移向量与扩散矩阵非参数估计的通用模型.  相似文献   

11.
Principal component analysis (PCA) has been a prominent tool for high-dimensional data analysis. Online algorithms that estimate the principal component by processing streaming data are of tremendous practical and theoretical interests. Despite its rich applications, theoretical convergence analysis remains largely open. In this paper, we cast online PCA into a stochastic nonconvex optimization problem, and we analyze the online PCA algorithm as a stochastic approximation iteration. The stochastic approximation iteration processes data points incrementally and maintains a running estimate of the principal component. We prove for the first time a nearly optimal finite-sample error bound for the online PCA algorithm. Under the subgaussian assumption, we show that the finite-sample error bound closely matches the minimax information lower bound.  相似文献   

12.
This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivity growth estimates derived from growth accounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.  相似文献   

13.
We consider rate swaps which pay a fixed rate against a floating rate in the presence of bid-ask spread costs. Even for simple models of bid-ask spread costs, there is no explicit strategy optimizing an expected function of the hedging error. We here propose an efficient algorithm based on the stochastic gradient method to compute an approximate optimal strategy without solving a stochastic control problem. We validate our algorithm by numerical experiments. We also develop several variants of the algorithm and discuss their performances in terms of the numerical parameters and the liquidity cost.  相似文献   

14.
In this paper we consider the decision problem affected by an unwanted dynamic parameter. We show that this problem can be solved by an adaptive joint maximum-likelihood (ML) strategy, which makes use of a stochastic gradient algorithm. We point out that the bandwidth of the stochastic gradient algorithm is an important design parameter, which greatly influences the decision error probability.  相似文献   

15.
A variable stepsize control algorithm for solution of stochastic differential equations (SDEs) with a small noise parameter ?? is presented. In order to determine the optimal stepsize for each stage of the algorithm, an estimate of the global error is introduced based on the local error of the Stochastic Runge?CKutta Maruyama (SRKM) methods. Based on the relation of the stepsize and the small noise parameter, the local mean-square stochastic convergence order can be different from stage to stage. Using this relation, a strategy for producing and controlling the stepsize in the numerical integration of SDEs is proposed. Numerical experiments on several standard SDEs with small noise are presented to illustrate the effectiveness of this approach.  相似文献   

16.
We consider a rather general one-dimensional stochastic approximation algorithm where the steplengths might be random. Without assuming a martingale property of the random noise we obtain a strong representation by weighted averages of the error terms. We are able to apply the representation to an adaptive process in the case where the random noise is a martingale difference sequence as well as in the case where the random noise is weakly dependent and some moment conditions are statisfied.  相似文献   

17.
Andreas Rßler 《PAMM》2003,2(1):461-462
We present some new embedded explicit stochastic Runge‐Kutta methods for the approximation of Stratonovich stochastic differential equations in the weak sense with different orders of convergence. The presented methods yield an estimate of the local error which can be used for a step size control algorithm.  相似文献   

18.
In this article, we study the error covariance of the recursive Kalman filter when the parameters of the filter are driven by a Markov chain taking values in a countably infinite set. We do not assume ergodicity nor require the existence of limiting probabilities for the Markov chain. The error covariance matrix of the filter depends on the Markov state realizations, and hence forms a stochastic process. We show in a rather direct and comprehensive manner that this error covariance process is mean bounded under the standard stochastic detectability concept. Illustrative examples are included.  相似文献   

19.
This paper considers a distributed optimization problem encountered in a time-varying multi-agent network, where each agent has local access to its convex objective function, and cooperatively minimizes a sum of convex objective functions of the agents over the network. Based on the mirror descent method, we develop a distributed algorithm by utilizing the subgradient information with stochastic errors. We firstly analyze the effects of stochastic errors on the convergence of the algorithm and then provide an explicit bound on the convergence rate as a function of the error bound and number of iterations. Our results show that the algorithm asymptotically converges to the optimal value of the problem within an error level, when there are stochastic errors in the subgradient evaluations. The proposed algorithm can be viewed as a generalization of the distributed subgradient projection methods since it utilizes more general Bregman divergence instead of the Euclidean squared distance. Finally, some simulation results on a regularized hinge regression problem are presented to illustrate the effectiveness of the algorithm.  相似文献   

20.
A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-tuning control in nonlinear continuous-time stochastic systems. Then, a corresponding adaptive digital control scheme is proposed for continuous-time multivariable nonlinear stochastic systems, which have unknown system parameters, measurement noise/external disturbances, and inaccessible system states. The proposed method enables the development of a digitally implementable advanced control algorithm for nonlinear stochastic hybrid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号