首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We study the stability of endemic equilibriums of the deterministic and stochastic SIS epidemic models with vaccination. The deterministic SIS epidemic model with vaccination was proposed by Li and Ma(2004), for which some sufficient conditions for the global stability of the endemic equilibrium were given in some earlier works. In this paper, we first prove by Lyapunov function method that the endemic equilibrium of the deterministic model is globally asymptotically stable whenever the basic reproduction number is larger than one. For the stochastic version, we obtain some sufficient conditions for the global stability of the endemic equilibrium by constructing a class of different Lyapunov functions.  相似文献   

2.
In this paper we study a stochastic epidemic model of vector-borne diseases with direct mode of transmission and its delay modification. More precisely, we extend the deterministic epidemic models by introducing random perturbations around the endemic equilibrium state. By using suitable Lyapunov functions and functionals, we obtain stability conditions for the considered models and study the effect of the delay on the stability of the endemic equilibrium. Finally, numerical simulations for the stochastic model of malaria disease transmission are presented to illustrate our mathematical findings.  相似文献   

3.
In this article, we consider stochastic susceptible-infected-removed-susceptible (SIRS) epidemic models with saturated incidence rates and delay. We investigate the stochastic stability in probability of the disease-free and endemic equilibria for the stochastic dynamic model with variability in the natural death rate, and the stochastic stability in probability of the endemic equilibrium for the dynamic model when the variability in the environment is proportional to a deviation between the state of the system and the endemic equilibrium. The numerical experiments are provided to support our theoretical results.  相似文献   

4.
In this paper, a stochastic SEIS epidemic model with a saturation incidence rate and a time delay describing the latent period of the disease is investigated. The model inherits the endemic steady state from its corresponding deterministic counterpart. We first show the existence and uniqueness of the global positive solution of the model. Then, by constructing Lyapunov functionals, we derive sufficient conditions ensuring the stochastic stability of the endemic steady state. Numerical simulations are carried out to confirm our analytical results. Furthermore, our simulation results shows that the existence of noise and delay may cause the endemic steady state to be unstable.  相似文献   

5.
一类带有一般接触率和常数输入的流行病模型的全局分析   总被引:12,自引:1,他引:11  
借助极限系统理论和构造适当的Liapunov函数,对带有一般接触率和常数输入的SIR型和SIRS型传染病模型进行讨论.当无染病者输入时,地方病平衡点存在的阈值被找到A·D2对相应的SIR模型,关于无病平衡点和地方病平衡点的全局渐近稳定性均得到充要条件;对相应的SIRS模型,得到无病平衡点和地方病平衡点全局渐近稳定的充分条件.当有染病者输入时,模型不存在无病平衡点.对相应的SIR模型,地方病平衡点是全局渐近稳定的;对相应的SIRS模型,得到地方病平衡点全局渐近稳定的充分条件.  相似文献   

6.
We discuss the dynamic of a stochastic Susceptible-Infectious-Recovered-Susceptible (SIRS) epidemic model with nonlinear incidence rate.The crucial threshold $\tilde{R}_0$ is identified and this will determine the extinction and persistence of the epidemic when the noise is small. We also discuss the asymptotic behavior of the stochastic model around the endemic equilibrium of the corresponding deterministic system. When the noise is large, we find that a large noise intensity has the effect of suppressing the epidemic, so that it dies out. Finally, these results are illustrated by computer simulations.  相似文献   

7.
In this paper, we present a DI SIR epidemic model with two categories stochastic perturbations. The long time behavior of the two stochastic systems is studied. Mainly, we show how the solution goes around the infection-free equilibrium and the endemic equilibrium of deterministic system under different conditions.  相似文献   

8.
In this paper, a stochastic delayed epidemic model with a generalized incidence rate is proposed and discussed. The positivity of solutions is established. A linearized form of the model is given and the stability conditions of the endemic equilibrium are obtained by using the technique of Lyapunov functionals.  相似文献   

9.
In this paper, we study a type of susceptible-exposed-infected (SEI) epidemic model with varying population size and introduce the random perturbation of the constant contact rate into the SEI epidemic model due to the universal existence of fluctuations. Under some moderate conditions, the density of the exposed and the infected individuals exponentially approaches zero almost surely are derived. Furthermore, the stochastic SEI epidemic model admits a stationary distribution around the endemic equilibrium, and the solution is ergodic. Some numerical simulations are carried out to demonstrate the efficiency of the main results.  相似文献   

10.
In this paper, we discuss the two-group SIR model introduced by Guo, Li and Shuai [H.B. Guo, M.Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q. 14 (2006) 259–284], allowing random fluctuation around the endemic equilibrium. We prove the endemic equilibrium of the model with random perturbation is stochastic asymptotically stable in the large. In addition, the stability condition is obtained by the construction of Lyapunov function. Finally, numerical simulations are presented to illustrate our mathematical findings.  相似文献   

11.
讨论了具有双时滞的SIS传染病模型.研究了一个边界平衡点的全局稳定性和正平衡点的局部稳定性,得到了传染病最终消失和成为地方病的阈值.  相似文献   

12.
In this paper, an SEIS epidemic model with nonlinear incidence and time delay is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the model is established. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

13.
In this paper, we present the deterministic and stochastic delayed SIQS epidemic models. For the deterministic model, the basic reproductive number $R_{0}$ is given. Moreover, when $R_{0}<1$, the disease-free equilibrium is globally asymptotical stable. When $R_{0}>1$ and additional conditions hold, the endemic equilibrium is globally asymptotical stable. For the stochastic model, a sharp threshold $\overset{\wedge }{R}_{0}$ which determines the extinction or persistence in the mean of the disease is presented. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. Numerical simulations are also conducted in the analytic results.  相似文献   

14.
This paper is concerned with the existence of travelling waves to an SIRS epidemic model with bilinear incidence rate, spatial diffusion and time delay. By analysing the corresponding characteristic equations, the local stability of a disease-free steady state and an endemic steady state to this system under homogeneous Neumann boundary conditions is discussed. By using the cross iteration method and the Schauder’s fixed point theorem, we reduce the existence of travelling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of a travelling wave solution connecting the disease-free steady state and the endemic steady state. Numerical simulations are carried out to illustrate the main results.  相似文献   

15.
We consider a stochastically forced epidemic model with medical-resource constraints. In the deterministic case, the model can exhibit two type bistability phenomena, i.e., bistability between an endemic equilibrium or an interior limit cycle and the disease-free equilibrium, which means that whether the disease can persist in the population is sensitive to the initial values of the model. In the stochastic case, the phenomena of noise-induced state transitions between two stochastic attractors occur. Namely, under the random disturbances, the stochastic trajectory near the endemic equilibrium or the interior limit cycle will approach to the disease-free equilibrium. Besides, based on the stochastic sensitivity function method, we analyze the dispersion of random states in stochastic attractors and construct the confidence domains (confidence ellipse or confidence band) to estimate the threshold value of the intensity for noise caused transition from the endemic to disease eradication.  相似文献   

16.
The aim of this paper is to study the dynamics of an SIS epidemic model with diffusion. We first study the well-posedness of the model. And then, by using linearization method and constructing suitable Lyapunov function, we establish the local and global stability of the disease-free equilibrium and the endemic equilibrium, respectively. Furthermore, in view of Schauder fixed point theorem, we show that the model admits traveling wave solutions connecting the disease-free equilibrium and the endemic equilibrium when R_0 1 and c c~*. And also, by virtue of the two-sided Laplace transform, we prove that the model has no traveling wave solution connecting the two equilibria when R_0 1 and c ∈ [0, c~*).  相似文献   

17.
An epidemic model on the basis of therapy of chronic Hepatitis B with antivirus treatment was introduced in this paper. By applying a comparison theorem and analyzing the corresponding characteristic equations, we obtain sufficient conditions on the parameters for the global stability of the disease-free state. It's proved that if the basic reproduction number \(R_0 &lt; 1\) , the disease-free equilibrium is globally asymptotically stable. If \(R_0 &gt; 1\), the disease-free equilibrium is unstable and the disease is uniformly permanent. Moreover, if \(R_0 &gt; 1\), sufficient conditions are obtained for the global stability of the endemic equilibrium.  相似文献   

18.
This paper considers an SEIS epidemic model with infectious force in the latent period and a general population-size dependent contact rate.A threshold parameter R is identified.If R≤1,the disease-free equilibrium O is globally stable.IfR>1,there is a unique endemic equilibrium and O is unstable.For two important special cases of bilinear and standard incidence,sufficient conditions for the global stability of this endemic equilibrium are given.The same qualitative results are obtained provided the threshold is more than unity for the corresponding SEIS model with no infectious force in the latent period.Some existing results are extended and improved.  相似文献   

19.
In this paper, a stage‐structured SI epidemic model with time delay and nonlinear incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease‐free equilibrium, and the existence of Hopf bifurcations are established. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease‐free equilibrium is globally asymptotically stable. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, an SIR epidemic model with saturation incidence and a time delay describing a constant infectious period is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. When the basic reproduction number is greater than unity, it is proved that the disease is uniformly persistent in the population, and explicit formulae are obtained to estimate the eventual lower bound of the fraction of infectious individuals. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global attractiveness of the endemic equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号